• Reference :1

    Acosta-Gamboa, L.M., Liu, S., Langley, E., Campbell, Z., Castro-Guerrero, N., Mendoza-Cozatl, D., Lorence, A., 2017. Moderate to severe water limitation differentially affects the phenome and ionome of Arabidopsis. Functional Plant Biology 44(1), 94–106.

    Anonymous, 2020. Food and agriculture organization of the United Nations.FAOSTAT Statistics Database. Available at FAO. www.fao.org/faostat/en/. Accessed on 2nd February 2022.

    Camargo, A., Papadopoulou, D., Spyropoulou, Z., Vlachonasios, K., Doonan, J.H., Gay, A.P., 2014. Objective definition of rosette shape variation using a combined computer vision and data mining approach. PloS One 9(5), e96889.

    Chen, D., Shi, R., Pape, J.M., Neumann, K., Arend, D., Graner, A., Klukas, C., 2018. Predicting plant biomass accumulation from image-derived parameters. Gigascience 7(2), giy001.

    Conti, V., Mareri, L., Faleri, C., Nepi, M., Romi, M., Cai, G., Cantini, C., 2019. Drought stress affects the response of italian local tomato (Solanum lycopersicum L.) Varieties in a genotype-dependent manner. plants (Basel, Switzerland) 8(9), 336. https://doi.org/10.3390/plants8090336.

    Das Choudhury, S., Samal, A., Awada, T., 2019. Leveraging image analysis for high-throughput plant phenotyping. Frontiers in Plant Science 10, 508.

    Dash, A.K., Nayak, B.R., Panigrahy, N., 2015. Effect of different levels of irrigation and nutrient management practices on the performance of tomato (Lycopersicon esculentum L.). International Journal of Bio-resource and Stress Management 6(1), 24–29.

    Duan, L., Han, J., Guo, Z., Tu, H., Yang, P., Zhang, D., Yang, W., 2018. Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Frontiers in Plant Science 9, 492.

    Escos, J., Alados, C.L., Pugnaire, F.I., Puigdefabregas, J., Emlen, J., 2000. Stress resistancestrategy in an arid land shrub: interactions between developmental instability and fractaldimension. Journal of Arid Environments 45(4), 325–336.

    Francesca, S., Vitale, L., Arena, C., Raimondi, G., Olivieri, F., Cirillo, V., Paradiso, A., de Pinto, M.C., Maggio, A., Barone, A., Rigano, M.M., 2022. The efficient physiological strategy of a novel tomato genotype to adapt to chronic combined water and heat stress. Plant Biology (Stuttg) 24(1), 62–74. doi: 10.1111/plb.13339.

    Halperin, O., Gebremedhin, A., Wallach, R., Moshelion, M., 2016. High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. The Plant Journal 89(4), 839–850.

    Joshi, S., Thoday-Kennedy, E., Daetwyler, H.D., Hayden, M., Spangenberg, G., Kant, S., 2021. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance. PloSOne 16(7), e0254908. https://doi.org/10.1371/journal.pone.0254908

    Kacira, M., Ling, P.P., Short, T.H., 2002. Machine vision extracted plant movement for early detection of plant water stress. Transactions of the ASAE 45(4), 1147.

    Knecht, A.C., Campbell, M.T., Caprez, A., Swanson, D.R., Walia, H., 2016.  Image harvest: an open-source platform for high-throughput plant image processing and analysis. Journal of Experimental Botany 67(11), 3587–3599.

    Kurata, K., Yan, J., 1996. Water stress estimation of tomato canopy based on machine vision. In International Symposium on Plant Production in Closed Ecosystems 440, 389–394.

    Lokesha, A.N., Shivashankara, K.S., Laxman, R.H., Sadashiva, A.T., Shankar, A.G., 2019. Response of contrasting tomato genotypes under high temperature stress.  Mysore Journal of Agricultural Sciences 53(2), 9–14.

    Maiti, R., Rajkumar, D., Vidyasagar, P., 2014. Morpho-anatomical study of 100 tomato lines. International Journal of Bio-resource and Stress Management 5(1), 78–81.

    Mamatha, H., Srinivasa, Rao, N.K., Laxman, R.H., Shivashankara, K.S., Bhatt, R.M., Pavithra, K.C., 2014. Impact of elevated CO2 on growth, physiology, yield and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynthetica 52(4), 519–528.

    Neilson, E.H., Edwards, A.M., Blomstedt, C.K., Berger, B., Moller, B.L., Gleadow, R.M., 2015. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. Journal of Experimental Botany 66(7), 1817–1832.

    Neumann, K., Klukas, C., Friedel, S., Rischbeck, P., Chen, D., Entzian, A., Kilian, B., 2015. Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis. Plant, Cell & Environment 38(10), 1980–1996.

    Nguyen, G.N., Norton, S.L., Rosewarne, G.M., James, L.E., Slater, A.T., 2018. Automated phenotyping for early vigour of field pea seedlings in controlled environment by colour imaging technology. PloS One 13(11), e0207788.

    Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M., Dursun, A., 2021. Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany 137, 335–339.

    Padilla-Chacon, D., Pena Valdivia, C.B., Garcia-Esteva, A., Cayetano-Marcial, M.I., Kohashi Shibata, J., 2019. Phenotypic variation and biomass partitioning during post-flowering in two common bean cultivars (Phaseolus vulgaris L.) under water restriction. South African Journal of Botany 121, 98–104. 

    Petrozza, A., Santaniello, A., Summerer, S., Di Tommaso, G., Di Tommaso, D., Paparelli, E., Cellini, F., 2014. Physiological responses to Megafol® treatments in tomato plants under drought stress: a phenomic and molecular approach. Scientia Horticulturae 174, 185–192.

    Seginer, I., Elster, R.T., Goodrum, J.W., Rieger, M.W., 1992. Plant wilt detection by computer-vision tracking of leaf tips. Transactions of the ASAE 35(5), 1563–1567.

    Siddiqui, Z.S., Cho, J.I., Park, S.H., Kwon, T.R., Ahn, B.O., Lee, G.S., Jeong, M.J., Kim, K.W., Lee, S.K., Park, S.C., 2014. Phenotyping of rice in salt stress environment using high-throughput infrared imaging. Acta Botanica Croatica 73(1), 149–158.

    Singh, S.K., Thakur, A.K., Sharma, H.R.,  Shukla, A., Singh, U., 2014.  Influence of mulch and biofertilizer on growth and yield of tomato. International Journal of Bio-resource and Stress Management 5, 186–193.

    Suresh, B.V., Roy, R., Sahu, K., Misra, G., Chattopadhyay, D., 2014. Tomato genomic resources database: an integrated repository of useful tomato genomic information for basic and applied research. PloS One 9(1), e86387.

    vanEeuwijk, F.A., Bustos-Korts, D., Millet, E.J., Boer, M.P., Kruijer, W., Thompson, A., Chapman, S.C., 2019. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Science 282, 23–39.

    Vasseur, F., Wang, G., Bresson, J., Schwab, R., Weigel, D., 2017. Image-based methods for phenotyping growth dynamics and fitness in large plant populations. BioRxiv, 208512.

    Wang, H., Qian, X., Zhang, L., Xu, S., Li, H., Xia, X., Liu, X., 2018. A method of high-throughput monitoring crop physiology using chlorophyll fluorescence and multispectral imaging. Frontiers in Plant Science 9, 407.

    Zygielbaum, A.I., Gitelson, A.A., Arkebauer, T.J., Rundquist, D.C., 2009. Non-destructive detection of water stress and estimation of relative water content in maize. Geophysical Research Letters 36, L12403.