Table 1: Mean ( ±SEm) physiological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 2: Mean ( ± S.E.) heamatological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 3: Correlation coefficients among the physiological and heamatological parameters of unstressed Andaman local bucks
Table 4: Correlation coefficients among the physiological and heamatological parameters of stressed Andaman local bucks
Figure 1: Effect of walking stress on antioxidants activity in goat bucks (* indicates p<0.05). TAC: Total antioxidant capacity (nmol µl-1), CAT: Catalase(nmol min-1 l-1) and GSH: Glutathione(nmol l-1). Gr 1: Unstressed animal group, Gr 2: Stressed animal group.
Figure 2: Effect of walking stress on superoxide dismutase activity in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Figure 3: Effect of walking stress on malondialdehyde (MDA) production in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Table 1: Mean ( ±SEm) physiological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 2: Mean ( ± S.E.) heamatological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 3: Correlation coefficients among the physiological and heamatological parameters of unstressed Andaman local bucks
Table 4: Correlation coefficients among the physiological and heamatological parameters of stressed Andaman local bucks
Figure 1: Effect of walking stress on antioxidants activity in goat bucks (* indicates p<0.05). TAC: Total antioxidant capacity (nmol µl-1), CAT: Catalase(nmol min-1 l-1) and GSH: Glutathione(nmol l-1). Gr 1: Unstressed animal group, Gr 2: Stressed animal group.
Figure 2: Effect of walking stress on superoxide dismutase activity in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Figure 3: Effect of walking stress on malondialdehyde (MDA) production in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Table 1: Mean ( ±SEm) physiological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 2: Mean ( ± S.E.) heamatological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 3: Correlation coefficients among the physiological and heamatological parameters of unstressed Andaman local bucks
Table 4: Correlation coefficients among the physiological and heamatological parameters of stressed Andaman local bucks
Figure 1: Effect of walking stress on antioxidants activity in goat bucks (* indicates p<0.05). TAC: Total antioxidant capacity (nmol µl-1), CAT: Catalase(nmol min-1 l-1) and GSH: Glutathione(nmol l-1). Gr 1: Unstressed animal group, Gr 2: Stressed animal group.
Figure 2: Effect of walking stress on superoxide dismutase activity in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Figure 3: Effect of walking stress on malondialdehyde (MDA) production in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Table 1: Mean ( ±SEm) physiological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 2: Mean ( ± S.E.) heamatological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 3: Correlation coefficients among the physiological and heamatological parameters of unstressed Andaman local bucks
Table 4: Correlation coefficients among the physiological and heamatological parameters of stressed Andaman local bucks
Figure 1: Effect of walking stress on antioxidants activity in goat bucks (* indicates p<0.05). TAC: Total antioxidant capacity (nmol µl-1), CAT: Catalase(nmol min-1 l-1) and GSH: Glutathione(nmol l-1). Gr 1: Unstressed animal group, Gr 2: Stressed animal group.
Figure 2: Effect of walking stress on superoxide dismutase activity in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Figure 3: Effect of walking stress on malondialdehyde (MDA) production in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Table 1: Mean ( ±SEm) physiological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 2: Mean ( ± S.E.) heamatological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 3: Correlation coefficients among the physiological and heamatological parameters of unstressed Andaman local bucks
Table 4: Correlation coefficients among the physiological and heamatological parameters of stressed Andaman local bucks
Figure 1: Effect of walking stress on antioxidants activity in goat bucks (* indicates p<0.05). TAC: Total antioxidant capacity (nmol µl-1), CAT: Catalase(nmol min-1 l-1) and GSH: Glutathione(nmol l-1). Gr 1: Unstressed animal group, Gr 2: Stressed animal group.
Figure 2: Effect of walking stress on superoxide dismutase activity in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Figure 3: Effect of walking stress on malondialdehyde (MDA) production in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Table 1: Mean ( ±SEm) physiological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 2: Mean ( ± S.E.) heamatological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 3: Correlation coefficients among the physiological and heamatological parameters of unstressed Andaman local bucks
Table 4: Correlation coefficients among the physiological and heamatological parameters of stressed Andaman local bucks
Figure 1: Effect of walking stress on antioxidants activity in goat bucks (* indicates p<0.05). TAC: Total antioxidant capacity (nmol µl-1), CAT: Catalase(nmol min-1 l-1) and GSH: Glutathione(nmol l-1). Gr 1: Unstressed animal group, Gr 2: Stressed animal group.
Figure 2: Effect of walking stress on superoxide dismutase activity in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Figure 3: Effect of walking stress on malondialdehyde (MDA) production in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Table 1: Mean ( ±SEm) physiological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 2: Mean ( ± S.E.) heamatological parameters of Andaman local bucks exposed to walking stress at different weeks
Table 3: Correlation coefficients among the physiological and heamatological parameters of unstressed Andaman local bucks
Table 4: Correlation coefficients among the physiological and heamatological parameters of stressed Andaman local bucks
Figure 1: Effect of walking stress on antioxidants activity in goat bucks (* indicates p<0.05). TAC: Total antioxidant capacity (nmol µl-1), CAT: Catalase(nmol min-1 l-1) and GSH: Glutathione(nmol l-1). Gr 1: Unstressed animal group, Gr 2: Stressed animal group.
Figure 2: Effect of walking stress on superoxide dismutase activity in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
Figure 3: Effect of walking stress on malondialdehyde (MDA) production in goat bucks (* indicates p<0.05). Gr 1: Unstressed animal group, Gr 2: Stressed animal group
People also read
Full Research
Effect of Fungicides and Herbicides against Rhizoctonia solani f. sp. sasakii Exner Causing Banded Leaf and Sheath Blight in maize (Zea mays L.)
M. Madhavi, P. Narayan Reddy, K. Manohar and Ch. Aruna KumariMaize, Rhizoctonia solani, BLSB, sensitivity, fungicides, antibiotic, herbicides
Published Online : 07 Feb 2018
Innovative Technology
High Intensity Transplanting Increases Yield in Indigenous Aromatic Rice, Tulaipanji- a Case Study
Dhiman Sen and N. C. SarkarAromatic rice, tulaipanji, high intensity, transplanting, yield
Published Online : 07 Jun 2010
General
Steering Agriculture through the Concept of Triple S: Seed, Soil and Sustainability
C. S. PawarSustainable agriculture, chemical agriculture, seed-soil-sustainability
Published Online : 07 Sep 2010
Stress Management
Transgenic Approaches to Develop Abiotic Stress Tolerant Crop Plants: Rice as the Model Example
P. Satya, J. Mitra, C. S. Kar and H. K. SharmaRice, abiotic stress, genetic engineering
Published Online : 07 Sep 2010
Variation in Ralstonia solanacearum Isolated from Brinjal Plants in West Bengal
B. Mondal, I. Bhattacharya, A. sarkar and D. C. KhatuaBrinjal, bacterial wilt, Ralstonia solanacearum, aggressiveness
Published Online : 07 Jun 2011
Research Article
Molecular Characterisation and Genetic Diversity Analysis through SSR Markers in Germplasm Lines of Green gram [Vigna radiata (L.) Wilczek]
Kanavi, M. S. P., S. Rangaiah and Krishnaprasad, B. T.Green gram germplasm, genetic diversity, dendrogram, SSR markers
Published Online : 03 Jul 2019