An Overview of Indian Dacine Fruit Flies (Diptera: Tephritidae: Dacinae: Dacini)

A. Vasudha¹, Md. Abbas Ahmad² and M. L. Agarwal*²

¹Dept. of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (641 003), India
²Dept. of Entomology, Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur) Bihar (848 125), India

Abstract

Fruit flies belonging to tribe Dacini are pertinent pests of horticultural crops in Southeast Asia, Sub-Saharan Africa and Australasian Oceanian region. They pose enormous threats to fruit and vegetable production throughout the world, causing both quantitative and qualitative losses. Ninety two species of dacine fruit flies (28 endemic, 30.43% endemism) belonging to three genera, viz. Bactrocera Macquart (51 species, 17 endemic, 33.33% endemism), Dacus Fabricius (10 species, 3 endemic, 30.0% endemism), and Zeugodacus Hendel (31 species, 8 endemic, 25.80% endemism), and 19 subgenera have been listed from India. Of these, nine endemic species, viz. Bactrocera (Bactrocera) andamanensis, B. (B.) blairiae, B. (B.) curtivitta, B. (B.) patula, B. (B.) ranganathii, B. (Calodacus) harrietensis, Dacus (Mellesis) insulosus, Zeugodacus (Zeugodacus) fuscoalatus, Z. (Z.) havelockiae are known only from Andaman & Nicobar Islands. The current understanding of the morphology of the tribe, together with data on their biology, habitat associations, and distribution combine presents a picture of the phylogenetic relationships within the group. Besides, the knowledge of biology and behaviour of dacine species suggests that there is a close relationship between the fly species and their host plants which involves adult’s feeding, host recognition, courtship and mating, oviposition, larval feeding and bacteria associations. In the present paper notes on subgeneric classification of Dacini, their distribution, endemism, relative occurrence of different taxa, phylogeny, host associations, pest status, male lures and bacterial associations have been added.

Keywords: Dacini, phylogeny, distribution, host associations, male lures, bacterial associations

1. Introduction

Fruit flies are distributed in all biogeographic regions except in extreme desert and polar areas, where their hosts are scarce or absent (Foote et al., 1993). They have highly diverse biology and larvae of many species develop in fruits, vegetables, flower heads, buds, seeds, stems, etc. Fruit flies belonging to tribe Dacini are of greatest horticultural relevance and its most species are phytophagous and many pertinent pest species have been studied extensively, due to damage they cause in plants of economic interest (Norr bom et al., 1999). Many invasive dacine flies are pests of horticultural crops worldwide, due to their wide climatic tolerance, polyphagous nature, high reproduction potential, multivoltine nature and high capacity for dispersal (Prokopy, 1977). Tribe Dacini contains around a fifth of all known species in the family Tephritidae (Schutz et al., 2017).
These flies are frugivorous or florivorous and about 10 per cent of the recognized species are pests of commercial fruits and vegetables (Vargas et al., 2015). They use host’s tissues for larval development causing severe economic impact and liable to quarantine restrictions imposed by many countries (Foote, 1967; Aluja and Mangan, 2008). In India, fruit flies have been identified as one of the ten most serious problems of horticulture because of their polyphagous nature and cause a huge economic loss which varies from 2.5-100% depending upon the crop and season (Verghese et al., 2004; Dhillon et al., 2005). With respect to the larval host plants, most species are polyphagous; a few are oligophagous, while the remaining <1% are monophagous (Drew, 1989). Besides this, global invasion of fruit flies attracts a great deal of attention in the field of plant quarantine and invasion biology (Qin et al., 2015). India is a major producer of fruits and vegetables and with increasing globalization; it has become a challenge for this country not only to feed its own population but also to export fruits and vegetables to developed countries.

2. Tribe Dacini

The genus Dacus was first described by Fabricius in 1805 by its type-species D. armatus. Flies of tribe Dacini are often wasp mimics, usually black to brown with yellow vittae and predominantly hyaline wing with well developed costal band and anal streak (David and Ramani, 2019). Presently four genera, viz. Bactrocera Macquart, Dacus Fabricius, Monacrostitus Bezzi and Zeugodacus Hendel and 932 species are recognized in this tribe (Virgilio et al., 2015; San Jose et al., 2018; Doorenweerd et al., 2018). Drew and Romig (2013, 2016) considered Ichneumonopsis to be a member of Dacini, whereas Kovac et al. (2006, 2013) and Freidberg et al. (2017) included this genus in tribe Gastrozomiini. Earlier 85 species of Dacini were documented from India in 3 genera except for Monacrostitus (Agarwal and Sueyoshi, 2005; David and Ramani, 2011; Drew and Romig, 2013; David et al., 2017). The dacine flies are characterized by scutum black/brown/reddish-brown with or without yellow medial and lateral postsutural vittae; significantly reduced chaetotaxy of head and thorax. Face fulvous to black with a pair of dark spots or a band; wing with cell bm deeper/broader than bcu; extension of cell bcu longer than bcu; costal band vary in width and may expand at apex in small or large spot; males usually with pecten; ceromata present, female with 2 spermathecae.

3. Generic and Subgeneric Classification

Tribe Dacini is one of the most species rich clades within the family Tephritidae and includes 4 genera, viz. Bactrocera, Dacus, Zeugodacus and Monacrostitus. These genera are well distributed in and around Indian subcontinent and extending their range to Pacific Australasian countries, while greatest diversity of genus Dacus occurs in Afrotropical region. Shiraki (1933) discussed the generic classification of the Dacini and provided a key to 6 genera, viz. Chaetodacus Bezzi, Zeugodacus Hendel, Parazeugodacus Shiraki, Paratridacus Shiraki, Tetradacus Miyake and Mellesis Bezzi based on characters like presence or absence of supernumerary lobe and dense aggregation of microtrichia around vein CuA + 1A in male wing; presence or absence of bristles and a brown anal streak in wing; presence or absence of a pecten on 3rd abdominal tergite of male and shape of basal segment of ovipositor. Munro (1947) recognized only one genus Dacus and divided it into a number of subgenera. Hardy (1955) arranged Dacini species in 4 genera and 24 subgenera by considering groups of characters. Drew (1972) recognized two valuable characters in showing intra-tribe relationships, i.e. (1) Abdominal sternite V of male – posterior margin with a deep concavity or a very slight concavity. (2) Size of male surstylius - either short-at most only twice as long as anterior lobe or long-at least 6 times as long as anterior lobe. He divided genus Dacus into Dacus group and Strumeta group of subgenera on the basis of these characters.

4. Distribution and Relative Occurrence of Different Taxa

Most Dacini are found in Afrotropical region, Southeast Asia to Australasian Oceanian region and only a few have invaded in other areas. The Asian-Pacific Dacini, primarily consisting of Bactrocera and Zeugodacus species mainly occur in South East Asia and Papua New Guinea (Drew, 2004). The distributions of known species within the tribe Dacini in India is given in Table 1. In India, Dacini is represented by 3 genera Bactrocera, Dacus and Zeugodacus and 92 species (28 endemic, i.e. 30.43% endemism). The genus Bactrocera includes (51 species, 17 endemic – 33.33% endemism), Dacus (10 species, 3 endemic - 30% endemism) and Zeugodacus (31 species, 8 endemic –
Table 1: Indian dacine fruit flies, their attractant, species complex, pest status and distribution

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Name of taxa</th>
<th>No. of species</th>
<th>Attractant</th>
<th>Species complex</th>
<th>Pest status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Genus</td>
<td>Bactrocera Macquart, 1835</td>
<td>51 (17)</td>
<td>ME</td>
<td></td>
<td>NP</td>
<td>Bhutan, China (Yunnan), S. Vietnam, Thailand, Peninsular Malaysia, India (Megalaya)</td>
</tr>
<tr>
<td>1</td>
<td>Subgenus</td>
<td>(Bactrocera) Macquart, 1835</td>
<td>41 (14)</td>
<td>ME</td>
<td></td>
<td>PP</td>
<td>India (Andhra Pradesh, Karnataka, Tamil Nadu), Pakistan</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>aethriobasis (Hardy, 1973)</td>
<td>ME</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (Andam & Nicobar Is.), Thailand, Malaysia, Singapore, Indonesia (Sumatra, Java, Lombok, Sulawesi, Kalimantan) Australian Territory (Christmas Is.)</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>affinis (Hardy, 1954)</td>
<td>ME</td>
<td></td>
<td></td>
<td>PP</td>
<td>India (Andhra Pradesh, Karnataka, Tamil Nadu), Pakistan</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>albistrigata (de Meijere, 1911)</td>
<td>CL N. frauenfeldi</td>
<td>complex</td>
<td>FP</td>
<td></td>
<td>India (Andaman & Nicobar Is.), Thailand, Malaysia, Singapore, Indonesia (Sumatra, Java, Lombok, Sulawesi, Kalimantan) Australian Territory (Christmas Is.)</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>amarambalensis Drew, 2002</td>
<td>ME Dorsalis</td>
<td></td>
<td>complex</td>
<td>NP</td>
<td>India (Kerala), Sri Lanka</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>andamanensis (Kapoor, 1971)</td>
<td>CL Dorsalis</td>
<td>complex</td>
<td></td>
<td>NP</td>
<td>India (AN)</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>apicofuscans White & Tsuruta, 2001</td>
<td>ME</td>
<td></td>
<td>Dorsalis complex</td>
<td>NP</td>
<td>India (Karnataka, Kerala), Sri Lanka</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>apiconigroscutella Drew, 2002</td>
<td>CL Nigrotibialis</td>
<td>complex</td>
<td></td>
<td>NP</td>
<td>India</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>bhutaniae Drew & Romig, 2013</td>
<td>CL</td>
<td></td>
<td></td>
<td>NP</td>
<td>Bhutan, Bangladesh, India (Andaman Is.), Thailand, Vietnam, Cambodia, Taiwan</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>blairiae Drew & Romig, 2013</td>
<td>ME</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (AN)</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>carambolae Drew & Hancock, 1994</td>
<td>ME Dorsalis</td>
<td></td>
<td>complex</td>
<td>PP</td>
<td>Thailand, Malaysia, China (Yunnan), Singapore, Brunei Darussalam, Indonesia, Myanmar, Cambodia, S. Vietnam, Bangladesh, India (Megalaya, Andaman & Nicobar Is.). Introduced - Surinam, French Guyana, northern Brazil (Amapá), eradiated from Guyana</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>caryae (Kapoor, 1971)</td>
<td>ME Dorsalis</td>
<td></td>
<td>complex</td>
<td>PP</td>
<td>India</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>correcta (Bezzi, 1916)</td>
<td>ME</td>
<td></td>
<td>Dorsalis complex</td>
<td>PP</td>
<td>Cambodia, India, Bhutan, Myanmar, China (Yunnan, Guizhou), Nepal, Pakistan, Thailand, Vietnam, Malaysia (Peninsular), Sri Lanka, Bangladesh. USA- Florida (not established), California (eradiated)</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Category</td>
<td>Name of taxa</td>
<td>No. of species</td>
<td>Attractant</td>
<td>Species complex</td>
<td>Pest status</td>
<td>Distribution</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>curtivitta Drew & Romig, 2013</td>
<td>-</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (AN)</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>digressa Radhakrishnan, 1999</td>
<td>CL, Zingerone</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (Karnataka, Tamil Nadu, Telangana, Tripura), Bangladesh</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>dorsalis (Hendel, 1912)</td>
<td>ME, Zingerone</td>
<td>dorsalis complex</td>
<td>PP</td>
<td>Widespread Tropical Asia Introduced Africa and Oceania. Eradicated- Japan (Ryukyu Archipelago including Okinawa), Mauritius. USA - restricted distribution (California, Florida – eradicated), Hawaii, n. Marianas Islands (Rota, Saipan and Tinian). Europe- intercepted Belgium</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td>fastigata Tsuruta & White, 2001</td>
<td>CL</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (Karnataka, Kerala), Sri Lanka</td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td>furcata David and Hancock, 2017</td>
<td>-</td>
<td></td>
<td></td>
<td>NP</td>
<td>India</td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td>latifrons (Hendel, 1915)</td>
<td>Latilure</td>
<td></td>
<td></td>
<td>OP</td>
<td>Asia-Pakistan to Taiwan, Indonesia (Kalimantan, Java, Sulawesi). Introduced- Kenya, Tanzania, Iran; USA (Hawaii; California- eradicated); Japan (Yonaguni Is.- Okinawa Prefecture - invaded)</td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td>limbifera (Bezzi, 1919)</td>
<td>CL</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (Andaman & Nicobar Is.), Indonesia (Sumatra, Java, Lombok, Sulawesi, Brunei Darussalam, Flores, Kalimantan, Sumbawa), Vietnam, Philippines, Malaysia (Sarawak), Cambodia</td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td>melastomatos Drew & Hancock, 1994</td>
<td>CL</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>Peninsular Malaysia, Thailand, Singapore, India (Andaman & Nicobar Is.), Indonesia (Kalimantan, Java, Sumatra)</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td>merapiensis Drew & Hancock, 1994</td>
<td>CL</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>India (Karnataka, Kerala, Andaman Is.), Indonesia (Java, Sumatra)</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td>neoarecae Drew, 2002</td>
<td>ME</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td>neonigrotibialis Drew, 2002</td>
<td>CL</td>
<td>nigrotibialis complex</td>
<td>NP</td>
<td>India (Andhra Pradesh, Kerala, Tamil Nadu), Bhutan, Cambodia</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td>nigrifacia Zhang, Ji & Chen, 2011</td>
<td>CL</td>
<td>nigrotibialis complex</td>
<td>NP</td>
<td>China (Yunnan), Thailand (Chain Mai), Bangladesh, India (Tripura), Taiwan</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Continue...
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of taxa</th>
<th>No. of species*</th>
<th>Category</th>
<th>Attractive</th>
<th>Species complex</th>
<th>Pest status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>nigrofemoralis White & Tsuruta, 2001</td>
<td>CL</td>
<td>nigroribialis complex</td>
<td>NP</td>
<td>India, Pakistan, Sri Lanka, Bhutan, Bangladesh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>pallescentis (Hardy, 1955)</td>
<td>-</td>
<td>-</td>
<td>NP</td>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>paraosbeckiae Drew, 2002</td>
<td>CL</td>
<td>-</td>
<td>NP</td>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>paraverbascifoliae Drew, 2002</td>
<td>ME</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>India (Kerala), Sri Lanka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>patula Drew & Romig, 2013</td>
<td>CL</td>
<td>-</td>
<td>NP</td>
<td>India (AN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>penecorrecta Drew, 2002</td>
<td>ME</td>
<td>-</td>
<td>NP</td>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>prabhui David, 2019</td>
<td>-</td>
<td>-</td>
<td>NP</td>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>pseudoversicolor Drew, 2002</td>
<td>ME</td>
<td>-</td>
<td>NP</td>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>ranganathi Drew & Romig, 2013</td>
<td>ME</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>India (AN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>rubigina (Wang & Zhao, 1989)</td>
<td>CL, Zingerone</td>
<td>-</td>
<td>NP</td>
<td>China, Bhutan, Thailand, n. Vietnam, Bangladesh, India (Tripura), Taiwan, Sri Lanka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>syzygii White & Tsuruta, 2001</td>
<td>Zingerone</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>Sri Lanka, Bangladesh, India (Kerala, Tamil Nadu), Vietnam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>thailandica Drew & Hancock, 1994</td>
<td>CL</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>India (Meghalaya), China (Yunnan), Bhutan, Vietnam, Brunei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>tuberculata (Bezzi, 1916)</td>
<td>ME</td>
<td>-</td>
<td>PP</td>
<td>Bhutan, China (Yunnan), Myanmar, Thailand, Vietnam, Bangladesh, India (Meghalaya, Tripura)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>verbascifoliae Drew & Hancock, 1994</td>
<td>ME</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>India (Karnataka, Kerala, Tamil Nadu, Maharashtra, Bhutan, Myanmar, Thailand, Sri Lanka, Peninsular Malaysia, Indonesia (Java), Vietnam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>versicolor (Bezzi, 1916)</td>
<td>ME</td>
<td>-</td>
<td>MP</td>
<td>Bhutan, India (Bihar, Karnataka, Kerala, Maharashtra, Tamil Nadu, Telangana), Sri Lanka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>vishnu Drew & Hancock, 1994</td>
<td>CL</td>
<td>dorsalis complex</td>
<td>NP</td>
<td>India (Karnataka, Kerala, Maharashtra, Telangana, Tamil Nadu), Bhutan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td>zonata (Saunders, 1842)</td>
<td>ME</td>
<td>-</td>
<td>PP</td>
<td>Asia- Pakistan to Vietnam; Indonesia (Moluccas). Introduced - Mauritius, United Arab Emirates. Réunion Island, Iran Sudan, Oman, Saudi Arabia (restricted distribution); Iraq, Israel (few occurrence); Oman, Yemen, Egypt, Libya (localized). USA- Trapped (in California but not established), Florida (eradicated)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Continue...
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Name of taxa</th>
<th>No. of species</th>
<th>Attractant</th>
<th>Species complex</th>
<th>Pest status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Subgenus (Bulladacus) Drew & Hancock, 1995</td>
<td>cinnabaria Drew & Romig, 2013</td>
<td>1</td>
<td>-</td>
<td>Pest status</td>
<td>NP</td>
<td>Distribution: India (Car Nicobar Is.), Singapore, West Malaysia</td>
</tr>
<tr>
<td>III</td>
<td>Subgenus (Calodacus) Hancock, 2015</td>
<td>calophylli (Perkins & May, 1949)</td>
<td>3(2)</td>
<td>-</td>
<td>Pest status</td>
<td>NP</td>
<td>Distribution: Palau, Australia (Christmas Is., NE Queensland), Papua New Guinea (Mainland), Japan (Ryukyu Is.), western Caroline Is., India (Andaman and Nicobar Is.), Peninsular Malaysia, Singapore, s. Thailand, Palau, Solomon Islands (Guadalcanal), Vanuatu (Espiritu Santo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chettalli David & Ranganath, 2016</td>
<td>44</td>
<td>-</td>
<td>Pest status</td>
<td>NP</td>
<td>India</td>
</tr>
<tr>
<td></td>
<td></td>
<td>harrietensis Ramani & David, 2016</td>
<td>45</td>
<td>-</td>
<td>Pest status</td>
<td>NP</td>
<td>India (AN)</td>
</tr>
<tr>
<td>IV</td>
<td>Subgenus (Daculus) Speiser, 1924</td>
<td>oleae (Rossi, 1790)</td>
<td>1</td>
<td>-</td>
<td>Pest status</td>
<td>NP</td>
<td>Distribution: Georgia, India (Jammu & Kashmir), Iran, Israel, Jordan, Lebanon, Pakistan, Saudi Arabia, Syria, Turkey, Algeria, Angola, Egypt, Eritrea, Ethiopia, Kenya, Lesotho, Libya, Mauritius, Morocco, Namibia, Réunion, Seychelles, South Africa, Tunisia, Sudan, Albania, Croatia, Cyprus, France (restricted distribution, Corsica), Greece (mainland and Crete), Italy (including Sardinia, Sicily), Malta, Montenegro, Portugal (including Azores), Serbia, Slovenia, Spain (including Balearic Is. and Canary Is.), Switzerland. Introduced - USA (California, Florida), Mexico, Madeira Is., Maltese Is., Caucasus</td>
</tr>
<tr>
<td>V</td>
<td>Subgenus (Paratridacus) Shiraki, 1933</td>
<td>garciniae Bezzi, 1913</td>
<td>1</td>
<td>-</td>
<td>Pest status</td>
<td>NP</td>
<td>Sri Lanka, India (Karnataka)</td>
</tr>
<tr>
<td>VI</td>
<td>Subgenus (Parazeugodacus) Shiraki, 1933</td>
<td>bipustulata Bezzi, 1914</td>
<td>2(1)</td>
<td>CL, Zingerone</td>
<td>Pest status</td>
<td>NP</td>
<td>India (Karnataka, Tamil Nadu), Sri Lanka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conica David & Ramani, 2019</td>
<td>49</td>
<td>-</td>
<td>Pest status</td>
<td>NP</td>
<td>India</td>
</tr>
</tbody>
</table>

Table 1: Continue...
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Name of taxa</th>
<th>No. of species</th>
<th>Attractant</th>
<th>Species complex</th>
<th>Pest status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>Subgenus (Tetradacus) Miyake, 1919</td>
<td></td>
<td>2</td>
<td>-</td>
<td></td>
<td>NP</td>
<td>India (Uttarakhand), China (Yunnan), Bhutan</td>
</tr>
<tr>
<td>50.</td>
<td>brachycera (Bezzi, 1916)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>minax (Enderlein, 1920)</td>
<td></td>
<td></td>
<td>weak ME</td>
<td></td>
<td>Fruit Pest</td>
<td>Bhutan, India (Sikkim, W. Bengal), Nepal, China</td>
</tr>
<tr>
<td>2</td>
<td>Genus Dacus Fabricius, 1805 (Callantra) Walker, 1860</td>
<td>10(3)</td>
<td>1</td>
<td></td>
<td></td>
<td>Cucurbits</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Subgenus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>longicornis Wiedemann, 1830</td>
<td></td>
<td></td>
<td>CL</td>
<td></td>
<td>Cucurbits</td>
<td>India (Bihar, Himachal Pradesh, Karnataka, Manipur, Mizoram, Tripura), Indonesia (Java, Bali, Lombok, Sumbawa, Sulawesi, Ambon), Brunei Darussalam, Malaysia (Peninsular & Sarawak), Bhutan, Vietnam, Myanmar, Laos, Cambodia, Thailand, China (Yunnan, Guizhou), Bhutan, Bangladesh, Sri Lanka, Philippines (Luzon)</td>
</tr>
<tr>
<td>II</td>
<td>Subgenus (Didacus) Collart, 1935</td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
<td>Cucurbits</td>
<td>Afrotropical region, Pakistan, Bangladesh, Comoros, St. Helena, Senegal, India, Nepal, Sri Lanka, Mali</td>
</tr>
<tr>
<td>53.</td>
<td>ciliatus Loew, 1862</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Subgenus (Leptoxyla) Macquart, 1835</td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
<td>NP</td>
<td>India, Oman, Iran, Iraq, Pakistan, Sri Lanka</td>
</tr>
<tr>
<td>54.</td>
<td>persicus Hendel, 1927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Subgenus (Mellesis) Bezzi, 1916</td>
<td>6(3)</td>
<td>6</td>
<td>-</td>
<td></td>
<td>NP</td>
<td>India (Himachal Pradesh, Karnataka, Kerala, Maharashtra), Sri Lanka</td>
</tr>
<tr>
<td>55.</td>
<td>crabroniformis (Bezzi, 1914)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>discophorus (Hering, 1956)</td>
<td></td>
<td></td>
<td>CL - weak, clove oil</td>
<td></td>
<td>NP</td>
<td>India (Bihar, Uttar Pradesh, W. Bengal), Nepal, China (Yunnan)</td>
</tr>
<tr>
<td>57.</td>
<td>icariiformis (Enderlein, 1920)</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td>NP</td>
<td>India (Andhra Pradesh, Karnataka, Kerala, Tamil Nadu), Sri Lanka</td>
</tr>
<tr>
<td>58.</td>
<td>insulosus Drew & Hancock, 1998</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>polistiformis (Senior-White, 1922)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>ramanii Drew & Hancock, 1998</td>
<td></td>
<td></td>
<td>CL</td>
<td></td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Subgenus (Neodacus) Perkins, 1937</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Continue...
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Name of taxa</th>
<th>No. of species</th>
<th>Attractant</th>
<th>Species complex</th>
<th>Pest status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.</td>
<td></td>
<td>sphaeroidalis (Bezzi, 1916)</td>
<td>CL</td>
<td>Attrac-</td>
<td>species complex</td>
<td>NP</td>
<td>China (Fujian, Guangxi Province), India (Himachal Pradesh, Tamil Nadu, Uttarakhand, Chandigarh), Pakistan, Thailand, Vietnam</td>
</tr>
<tr>
<td>3</td>
<td>Genus</td>
<td>Zeugodacus Hendel, 1927</td>
<td>31(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Subgenus</td>
<td>(Asiadacus) Perkins, 1937</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td></td>
<td>apicalis (de Meijere, 1911)</td>
<td>CL</td>
<td></td>
<td></td>
<td>NP</td>
<td>Indonesia (Java, Kalimantan, Sulawesi, East Malaysia (Sabah, Sarawak), Peninsular Malaysia, Thailand, Vietnam, China (Yunnan, Hainan), Brunei, Bangladesh, India (Tripura)</td>
</tr>
<tr>
<td>II</td>
<td>Subgenus</td>
<td>Capparidacus Hancock & Drew, 2018</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td></td>
<td>gavisus (Munro, 1935)</td>
<td>-</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (Karnataka, Maharashtra, Odisha, Tamil Nadu), Sri Lanka</td>
</tr>
<tr>
<td>III</td>
<td>Subgenus</td>
<td>(Hemigymnodacus) Hardy, 1973</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.</td>
<td></td>
<td>diversus (Coquillett, 1904)</td>
<td>weak ME</td>
<td>scutellaris complex</td>
<td>Cucurbits</td>
<td>India, Bhutan, Southern Vietnam, Bangladesh, Sri Lanka, Nepal, Pakistan, Thailand, China (Sichuan, Guizhou, Yunnan)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Subgenus</td>
<td>(Javadacus) Hardy, 1983</td>
<td>2(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td></td>
<td>scutellarius (Bezzi, 1916)</td>
<td>CL</td>
<td></td>
<td></td>
<td>NP</td>
<td>India</td>
</tr>
<tr>
<td>66.</td>
<td></td>
<td>trilineatus (Hardy, 1955)</td>
<td>CL</td>
<td>arisanica complex</td>
<td>NP</td>
<td>India (Karnataka, Kerala, Tamil Nadu), Sri Lanka, Thailand, Pakistan, Vietnam</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Subgenus</td>
<td>(Paradacus) Perkins, 1938</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td></td>
<td>duplicatus (Bezzi, 1916)</td>
<td>-</td>
<td></td>
<td></td>
<td>NP</td>
<td>India (Andhra Pradesh, Karnataka, Madhya Pradesh, Maharashtra), Pakistan, Sri Lanka</td>
</tr>
<tr>
<td>VI</td>
<td>Subgenus</td>
<td>(Parasinodacus) Drew & Romig, 2013</td>
<td>3(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td></td>
<td>binoyi Drew, 2002</td>
<td>CL</td>
<td></td>
<td></td>
<td>NP</td>
<td>India</td>
</tr>
<tr>
<td>69.</td>
<td></td>
<td>cilifer (Hendel, 1912)</td>
<td>CL</td>
<td></td>
<td></td>
<td>NP</td>
<td>Taiwan, India (Tripura), Peninsular Malaysia, Thailand, Vietnam, China (Yunnan), Laos, Indonesia (Sumatra, Pasaman), Bangladesh</td>
</tr>
</tbody>
</table>

Table 1: Continue...
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Name of taxa</th>
<th>No. of species</th>
<th>Attractor</th>
<th>Species complex</th>
<th>Pest status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.</td>
<td></td>
<td>incisus (Walker, 1861)</td>
<td>CL</td>
<td>CL</td>
<td></td>
<td>NP</td>
<td>India (Andaman Is., Tripura), Bangladesh, Myanmar, Thailand, Peninsular Malaysia, Vietnam, China (Yunnan)</td>
</tr>
<tr>
<td>VII</td>
<td>Subgenus</td>
<td>(Sinodacus) Zia, 1936</td>
<td>2(1)</td>
<td>CL</td>
<td>hochii complex</td>
<td>NP</td>
<td>India</td>
</tr>
<tr>
<td>71.</td>
<td></td>
<td>brevipunctatus (David and Hancock, 2017)</td>
<td>CL</td>
<td>hochii complex</td>
<td>NP</td>
<td>China (Yunnan, Guangxi, Hainan, Guizhou), Vietnam, India (Tripura), Indonesia (Nusa Tenggara, Java, Sumatra, Sumba), Bangladesh, Peninsular Malaysia, Thailand</td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td></td>
<td>hochii (Zia, 1936)</td>
<td>CL, Zingiberone</td>
<td>hochii complex</td>
<td>Cucurbits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Subgenus</td>
<td>(Zeugodacus) Hendel, 1927</td>
<td>20(5)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td></td>
<td>assamensis (White, 1999)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>India (Arunachal Pradesh, Himachal Pradesh), Bhutan, n. Vietnam, China (Gansu Province, Wenzian County)</td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td></td>
<td>atrifacies (Perkins, 1938)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>India (Arunachal Pradesh), Bangladesh, Bhutan, Malaysia (Selangor, Sarawak), Thailand, China (Guanxi), Vietnam</td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td></td>
<td>biguttatus (Bezzi, 1916)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>India (W. Bengal), Bhutan, China (Sichuan)</td>
<td></td>
</tr>
<tr>
<td>76.</td>
<td></td>
<td>bogorensis (Hardy, 1983)</td>
<td>CL</td>
<td>tau complex</td>
<td>NP</td>
<td>Indonesia (Java, Sumatra, North Sulawesi), India (Tripura)</td>
<td></td>
</tr>
<tr>
<td>77.</td>
<td></td>
<td>caudatus (Fabricius, 1805)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>Cucurbits</td>
<td>India, Myanmar, Cambodia, Nepal, China (Hainan), Bangladesh, Malaysia (East and Peninsular), Brunei Darussalam, Sri Lanka, Taiwan, Thailand, Vietnam, Indonesia</td>
<td></td>
</tr>
<tr>
<td>78.</td>
<td></td>
<td>cucurbitae (Coquillett, 1899)</td>
<td>CL</td>
<td>cucurbitae complex</td>
<td>PP</td>
<td>Tropical Asia (widespread). Introduced - Afrotropical region and Oceania. Eradicated Japan (Ryukyu Islands), Kiribati, Nauru, USA (California - eradicated), Hawaii, N. Mariana Islands (restricted distribution)</td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td></td>
<td>diaphorus (Hendel, 1915)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>India (Bihar, Meghalaya), Bangladesh, Bhutan, Peninsular Malaysia, Taiwan, Thailand, Sri Lanka, Vietnam, China (Hainan, Sichuan, Yunnan), Indonesia (Sumatra, Java)</td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td></td>
<td>freidbergi (White, 1999)</td>
<td>-</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>India</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Continue...
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Name of taxa</th>
<th>No. of species</th>
<th>Attractant</th>
<th>Species complex</th>
<th>Pest status</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.</td>
<td></td>
<td>fuscoalatus (Drew & Romig, 2013)</td>
<td>-</td>
<td>watersi complex</td>
<td>NP</td>
<td>India (AN)</td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td></td>
<td>havelockiae (Drew & Romig, 2013)</td>
<td>CL</td>
<td>tau complex</td>
<td>NP</td>
<td>India (AN)</td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td></td>
<td>hoabinhiae (Drew & Romig, 2013)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>India (Assam), n. Vietnam, Thailand</td>
<td></td>
</tr>
<tr>
<td>84.</td>
<td></td>
<td>scutellaris (Bezzi, 1913)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>Cucur-bits</td>
<td>Asia - Pakistan to Philippines; south to Sumatra and Sulawesi. Trapped Japan (Ishigaki Island)</td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td></td>
<td>semongokensis (Drew & Romig, 2013)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>East Malaysia (Sarawak and Sabah), India (Andaman and Nicobar Is.)</td>
<td></td>
</tr>
<tr>
<td>86.</td>
<td></td>
<td>signatus (Hering, 1941)</td>
<td>CL</td>
<td>tau complex</td>
<td>NP</td>
<td>India (Sikkim, Karnataka), Bhutan, Pakistan, Thailand</td>
<td></td>
</tr>
<tr>
<td>87.</td>
<td></td>
<td>tau (Walker, 1849)</td>
<td>CL</td>
<td>tau complex</td>
<td>PP</td>
<td>Asia - Pakistan to Philippines; south to Sumatra and Sulawesi. Trapped Japan (Ishigaki Island)</td>
<td></td>
</tr>
<tr>
<td>88.</td>
<td></td>
<td>trivandrumensis (Drew & Romig, 2013)</td>
<td>-</td>
<td>tau complex</td>
<td>NP</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>89.</td>
<td></td>
<td>vultus (Hardy, 1973)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>Thailand, China, Laos, Bhutan, East Malaysia (Sarawak, Sabah), Peninsular Malaysia, Indonesia (Java, Bali, Lombok), Philippines (Luzon Is.), Vietnam</td>
<td></td>
</tr>
<tr>
<td>90.</td>
<td></td>
<td>watersi (Hardy, 1954)</td>
<td>-</td>
<td>watersi complex</td>
<td>NP</td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>91.</td>
<td></td>
<td>yoshimotoi (Hardy, 1973)</td>
<td>CL</td>
<td>scutellaris complex</td>
<td>NP</td>
<td>Bhutan, Thailand, India (Meghalaya), Nepal, Vietnam</td>
<td></td>
</tr>
<tr>
<td>92.</td>
<td></td>
<td>zahadi (Mahmood, 1999)</td>
<td>CL</td>
<td>tau complex</td>
<td>NP</td>
<td>India (Karnataka, Kerala, Tamil Nadu, Tripura, Uttar Pradesh), Sri Lanka, Pakistan, Bhutan, Nepal, Myanmar, Vietnam</td>
<td></td>
</tr>
</tbody>
</table>

CL: Cue-lure; ME: Methyl eugenol; NP: Non pest; FP: Fruit pest; PP: Polyphagous pest; OP: Oligophagous pest; MP: Monophagous pest; India (AN): Species recorded from India (Andaman & Nicobar Islands) only; *Figures in parentheses indicate number of endemic species

25.80% endemism) (Figure 1, Table 1). The relative occurrence of species in each genus and subgenus is depicted in Figure 2. Nine species of Indian dacine flies (9.78%) are described only from Andaman and Nicobar Islands (Table 1). *Dacus* and *Zeugodacus* species namely, *D. longicornis*, *Z. caudatus*, *Z. diversus*, *Z. scutellaris* and *Z. tau* and are well distributed in most countries of Southeast Asia. Indian dacine species also show relationship with the corresponding fauna of other regions. *B. (Dacculus) oleae*, an African species spread to Mediterranean region and northwest India and Pakistan. The genus *Dacus* is known by 10 species in 5 subgenera, of which, *D. craboniformis*, *D. icariiformis* and *D. insulosus* are endemic. Two subgenera of African origin, *Didacus* and *Leptoxyda*, have radiated back to Asia with the occurrence of *D. (Didacus) ciliatus* (cucurbit feeders) and *D. (Leptoxyda) persicus* (in asclepiads) (Drew et al., 1998). *B. carambolae* has introduced into Neotropical region. Species namely, *B. albistrigata*, *B. correcta*, *B. carambola*, *B. dorsalis*, *B. latifrons*, *B. oleae*, *B. zonata*, *B. calophylli*, *D. ciliatus*, *D. persicus*, and *Z. cucurbita* have also been recorded/intercepted/eradicated (not established) from other zoogeographical areas (Agarwal, 2006).
5. Host Associations

Agarwal (2019) listed 296 species of fruit flies belonging to 90 genera from India. Species belonging to the genera *Bactrocera* and *Zeugodacus* are most economically significant with at least 50 polyphagous species considered to be important pests in tropical and subtropical areas of the world (White and Elson-Harris, 1992). The adults of polyphagous species have high mobility, relatively long life span (often more than 3 months) and high fecundity (> 1000 eggs/female) (Vargas et al., 1984), scramble type competition in the larval stage, several generations per year and the ability to pass unfavourable periods in a facultative reproductive diapause (Fletcher, 1987). Adult dacies mostly feed on plant secretions, nectar, sap, honey dew, bird dropping and microorganisms (Christenson and Foote, 1960) and direct damage begins with female puncturing the host's skin and ovipositing underneath it. During oviposition, fruit-rotting bacteria from the intestinal flora of the fly are introduced into the host which multiply and cause its tissues to rot (Vayssières et al., 2009). The larvae make feeding galleries resulting in conversion of host’s tissues in a spongy mess. The second and especially third instar stages are voracious feeders and generally, the fruit falls to the ground as, or just before the maggots pupate (Ekesi and Billah, 2006). The larvae feeding forms a “non-interactive grazing system” while other major class of food substrates constitute plant parts, e.g. shoots, flowers, roots and species utilizing such food operate in an “interactive grazing system” (Zwolfer, 1983).

Host utilization by fruit fly species, whether mono-, oligo- or polyphagous, must depend on adult’s choice in terms of attraction to the host for oviposition. Female uses visual cues such as plant colour and odours emitted by a host (mainly but not exclusively host’s specific). Light and Jang (1996) noted that there are 3 types of volatiles that can draw females (or males) to a particular habitat, “green leaf volatiles” such as aliphatic aldehydes and alcohols emitted by leaves and unripe fruit; (b) volatiles, mainly esters, emitted by ripening fruit; and (c) volatiles emanating from rotting fruit, bacteria, and other food sources, and species-specific volatiles emitted by the hosts of specialized fruit fly species. After alighting on a host, the female assesses its surface texture and chemical properties with tarsi and decide to bore or not. Finally, sensors at the tip of the aculeus send the last series of signals, allowing the female to reject the fruit or to accept it and lay eggs (Rice, 1989).

6. Phylogeny

Dacini is a tropical and subtropical evolutionary radiation of flies with centers of diversity in Southeast Asia and Sub-Saharan Africa. Early molecular phylogenetic studies focussed on pest species, often of a particular region, leading to biased results on the relationships between species that may not precisely reflect monophyletic origins or sister-group assignments (Smith et al., 2003; Nakahara and Muraji, 2008). Further phylogenetic studies molecular data resulted into splitting of large genus *Bactrocera* into *Bactrocera* and *Zeugodacus* (Krosch et al., 2012; Virgilio et al., 2015; San Jose et al., 2018). Besides, the Dacini taxa have been variably assigned to species complexes, species groups, subgenera and species-complex groups (Clarke et al., 2005; White, 2006; Drew and Romig, 2013). The largest and most intensively studied is the *Bactrocera dorsalis* complex with 88 species includes the largest number of pest species (Doorenweerd et al., 2018). This complex, like most others, is not monophyletic (Leblanc et al., 2015; Virgilio et al., 2015; San Jose et al., 2018). For Southeast Asian Dacini recent two-part work including a revision (Drew and Romig, 2013) and the accompanying keys
Phylogenetic studies on Dacini using morphological characters are few except for the work by White (1999), wherein 51 pest species were analysed using 38 morphological characters. His studies revealed Monacrostitchus as a sister group to Bactrocera and Dacus as that of Drew and Hancock (1999). A subgeneric phylogeny of genus Dacus using morphological characters was provided by Hancock and Drew (2006). Phylogenetic studies on Dacini using molecular markers were explored by several researchers: Smith et al. (2002) confirmed the monophyly of Dacus and Bactrocera. Smith et al. (2003) also reported monophyly of Bactrocera and noted the paraphyletic status of Zeugodacus in their analysis. White (2006) also indicated a sister group relationship between Zeugodacus group and genus Dacus. Han and Ro (2009) reconfirmed monophyly of subfamily Dacinae using 12s, 16s and COI gene fragments. Asokan et al. (2011) and Yong et al. (2015) revealed monophyly of Bactrocera using COI and 13 protein coding genes, respectively.

Krosch et al. (2012) concluded that genus Bactrocera consists of 2 clades, Bactrocera s.s. and Zeugodacus group of subgenus. They considered Zeugodacus clade, a sister group of Dacus and recommended to raise subgenus Zeugodacus to genus level. Virgilio et al. (2015) raised the subgenus Bactrocera (Zeugodacus) to generic rank (Zeugodacus Hendel, stat. nov.) and placed all species of subgenus (Zeugodacus) in the genus Zeugodacus; however, they concluded that exact relationship between Zeugodacus, Dacus and Bactrocera still needs to be resolved. San Jose et al. (2018) also confirmed the monophyly of genera Bactrocera, Dacus and Zeugodacus based on 7 genes in 167 species of the tribe Dacini. David and Ramani (2019) analysed phylogenetic relationships between Bactrocera, Dacus and Zeugodacus from India based on morphological characters. Cladistic analysis revealed the monophyly of Dacini, Bactrocera and Dacus with supporting non-homoplastic synapomorphies. Zeugodacus was retrieved as a monophyletic sister-group to Dacus.

7. Male Lures

Chemical cues and signals influence the behavior, physiology, and ecology of fruit flies and lures are used for surveillance, suppression, and ecological studies. Males of many daceine fruit flies are attracted to plant-derived secondary compounds termed male lures (Sivinski and Calkins, 1986). Howlett (1912) reported existence of fruit fly male lures in citronella (Cymbopogon nardus, Fam. Poaceae) oil. Howlett (1915) reported that the attractive component was phenyl proponoid methyl eugenol (ME) or 3-4 dimethoxy-1 allylbenzene and its effectiveness was rediscovered by Steiner (1952). Barthel et al. (1957) observed anisyl acetone or 4(p-methoxyphenyl)-2-butanal as an effective attractant for the melon fly. A derivative cue-lure (CL) or 4(p-acetoxyphenyl)-2-butanal was found to be more attractive to some daceine species (Beroza et al., 1960). Drew and Hooper (1981) reported that each daceine species responded only to one of these attractants and some species did not respond to either. However, several studies (Tan and Nishida, 1996; Tan et al., 2011) have demonstrated that certain male lures (e.g., methyl eugenol, raspberry ketone, and zingerone) are used in synthesizing male sex pheromones. ME is a widely distributed natural plant product that occurs in >450 plant species in 80 families found mainly in the tropics (Tan and Nishida, 2012). CL has not been isolated as a natural product but is rapidly hydrolyzed to form 4-(p-hydroxyphenyl)-2-butanone, rheosimin, or raspberry ketone (RK), a constituent of raspberries (Rubus iadeus and R. strigosus, Fam. Rosaceae) with a raspberry-like odour (Metcalf and Metcalf, 1992). RK was originally isolated from an orchid, Dendrobium superbuff (Nishida et al., 1993).

Of the 86 Dacini species that are horticultural pests, 41 respond to CL/RK and 18 to ME (Dacine Fruit Flies of the Asia-Pacific website, 2012). Based on this attraction, detection and monitoring traps and the suppression/eradication technique called male annihilation technique (MAT) was developed using these chemicals. Vargas et al. (2014) summarized future trends for use of male lures (Figure 3), such as the use of reduced risk insecticides, new lures, lure mixtures, and new dispenser formulations.

Among Indian Dacini males of 47 species respond to cue-lure, 20 species to methyl eugenol, 6 species to zingerone while B. latifrons males to latlure (Table 1). These attractants are

![Figure 3: Male lures of fruit flies](image)

also used in the surveillance system targeting more than one species at a time and are a powerful monitoring tool for the early detection of a species and population monitoring. Stringer et al. (2019) reported that in fruit fly management using various lure combinations reduces the cost of operation. Recently in Oceania and Asia, more attractive male lures (isoeugenol, methylisoeugenol, dihydroeugenol, and zingerone) were identified for several weakly CL- and methyl eugenol (ME) responsive species (Royer et al., 2019).

8. Bacterial Associations

Tephritid flies harbour communities of bacteria dominated by species of Enterobacteriaceae. These microbes are involved in
nitrogen fixation, reproductive success, temporal host range expansion, protection from pathogens and detoxification (Akami et al., 2019). Petri (1909) first observed symbiotic association with bacteria in olive fly, B. oleae. The attractancy of protein solutions containing bacteria to fruit flies was first reported by Gow (1954). Cultures of fruit fly type bacteria growing on peptone yeast extract agar (Drew et al., 1983) and hydrolyzed protein solutions inoculated with these bacteria are strong attractants for dacine species (Drew and Fay 1988). These bacteria provide nutrients for adult females and possibly larvae as a food substrate, olfactory cue to attract flies to the host plant, lure flies to the plant to ensure courtship and mating, and may play a role in the fly defense mechanisms against bacterial pathogens such as Serratia species. Krischik and Jones (1991) defined the bacteria associated with dacine fruit flies as insect mutualists, not symbionts and stated that the bacteria beneficially affect the capacity of the fly to explore the plant, and in turn the microorganism is affected by the insect-plant interaction.

In dacine flies bacterial mediation is hypothesized as being integral to the larval host plant being the ‘centre of activity’ of the fly (Raghu et al., 2002). The role of bacteria as a food source for adult fruit flies and how they affect their behaviour and fitness have been studied extensively by Drew et al., 1983; Drew and Lloyd, 1987, 1989, 1990; Drew, 1987 and by Fitt and O’Brien (1985), who reported that some bacteria found on ripening fruits also exist in the digestive tract of flies and that females transmit these bacteria to their offspring during oviposition. Gujar et al. (2017) attempted to decipher the gender specificity of gut bacterial communities of two major fruit fly species of India and based on molecular identification, B. dorsalis females were found to predominantly harbor the bacterial species Enterobacter cloacae, E. asburiae and Citrobacter freundii, while B. dorsalis males were found to harbor Providencia rettgeri, Klebsiella oxytoca, Enterococcus faecalis and Pseudomonas aeruginosa. The cultivable diversity from females of Z. cucurbitae comprised mainly of Morganella morganii and Bacillus pumilis while Z. cucurbitae males were predominantly colonized by aerobic endospore formers, viz. Bacillus cereus, B. licheniformis and B. subtilis.

9. Conclusion

The Indian Dacini fauna comprises of 92 species belonging to 3 genera and 19 subgenera. Efforts are in vogue to manage dacine fruit flies by using male lures which have been found of profound significance in monitoring, suppression and population eradication programmes. However, there is ample scope for further researches to study the molecular characterization of Indian dacine flies and to discover new attractants, particularly for females. Efforts should also be made by quarantine authorities to remain aware so that invasive pest species may not enter in India.

10. References

David, K.J., Hancock, D.L., Singh, S.K., Ramani, S., Behere,

Munro, H.K., 1984. A taxonomic treatise on the Dacidae (Tephritoidea, Diptera) of Africa. Entomology Memoir Department of Agriculture Republic South Africa No. 61, 313.

Royer, J.E., Mille, C., Cazeres, S., Brinon, J., Mayer, D.G., 2019. Isoeugenol, a more attractive male lure for the cue-lure-responsive pest fruit fly Bactrocerax curvipennis (Diptera: Tephritidae: Dacinae), and new records of species responding to zingerone in New Caledonia. Journal of Economic Entomology 61, 313.

Shiraki, T., 1933. A systematic study of Tryptetidae in the...
Japanese Empire. Memoir of the Faculty of Science and Agriculture Taihoku Imperial University 8, 509, pls. 14.

