Electron Microscopical Studies on Lymph node of Pati duck (*Anas platyrhynchos domesticus*) of Assam at Different Stages of Development

A. Deka, J. D. Mahanta and P. Perumal

Dept. of Anatomy and Histology, AAU-College of Veterinary Science, Khanapara, Guwahati, Assam (781 025), India

Abstract

The present investigation was conducted on the histomorphological, histo-chemical and scanning electron microscopical observation on the lymph node of Pati duck of Assam at different stages of development. Structure of the cervical and lumbar lymph node of Pati duck revealed the same structure in histomorphological observation. The lymph node was surrounded by a thin connective tissue capsule. The trabeculae which were arisen from the capsule divided the lymph node into number of irregular compartments. The trabeculae became distinct with the advancement of age. The parenchymatus part of these lymph node consisted of inner cortex and outer medulla along the cortical and medullary sinuses. The cortex of lymph node was occupied by numerous follicles with different shape. These lymphoid follicles were surrounded by very thin layer of capsule. The medulla of these lymph node consisted of medullary sinuses and medullary cords. The medullary sinuses were larger compared to the cortical sinuses. The medulla was loosely arranged in week 4th of age of Pati duck whereas in week 16th, 24th and 42nd of age, it became compact. Histochmically, the lymphatic nodule of lymph node showed intense reaction for acid phosphatase at week 42nd of age of Pati duck whereas lymphatic nodule of lymph node showed strong reaction for adenosine tri-phosphatase. In scanning electron microscopy, the lymph node of Pati duck were surrounded by very thin capsule and it contained numerous connective fibers. Medulla of the lymph node was peripherally located whereas cortex was situated centrally. The lymph node contained connective tissue fibers where lymphocytes were attached.

Keywords: Histomorphology, histochemical, electron microscope, lymph node, duck

1. Introduction

Duck husbandry provides an additional source of income to the rural women in Assam. Duck is one of the excellent converters of low quality waste products into high quality animal protein in the form of egg and meat. Duck eggs have great demand in the state of Assam as it has high biological value and considered to be a delicacy food item. The Pati duck population constitutes a major indigenous duck variety in Assam. The lymph nodes play an important role in defense mechanism of Pati duck by secreting IgA. Similar studies were conducted in other poultry species in other organs (Abdalla et al., 2011; Abu Ali et al., 2019; Madkour et al., 2019; Rabbani et al., 2019; Udoumoh et al., 2019). Being an indigenous variety of Assam and very scanty literature is available on the micro-
anatomical study on the lymph node of Pati duck. Hence, the present study was designed to establish anatomical norms on lymph node of Pati duck of Assam at different stages of development.

2. Materials and Methods

The present studies were conducted on 45 numbers of Pati duck of Assam of male and which were procured from Barpeta district of Assam. The experiment was conducted from 2017 to 2019 (2 years). These ducks were divided into five groups based on the age and each group consisted of 9 numbers of duck. The groups into five types viz., Gr 1: week 1, Gr 2: week 4, Gr 3: week 16, Gr 4: week 24 and Gr 5: week 42 of age. The experimental procedures were conducted at the Department of Anatomy and Histology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati. These ducks were sacrificed with standard slaughter method (Gracy, 1986). The duck of each age group were utilized for histological and micrometrical observation. The samples were collected from lymph node of all age groups of duck. These samples were fixed in 10% neutral buffered formalin solution and were processed as per the standard technique (Luna, 1968). The paraffin blocks were sectioned in Shandon Finesse microtome at 5 µm thickness and the sections were stained with Mayer’s Haematoxylin and Eosin staining technique for cellular details, Van Gieson’s method for collagen fibres, Gomori’s method for reticular fibres, Hart’s method for elastic fibres and Beilschowsky’s method for axis cylinder and dendrite. For Histochemical studies, the ducks were sacrificed and immediately collected the lymph nodes (both cervical and lumbar). The samples were then preserved at liquid nitrogen (-196 °C). Samples were made into cryosections (-20 °C) at 10 µm thickness and were temporarily stored at -22 °C. They were than treated for histochemical staining with the following methods:

a. Gomori’s alkaline phosphatase cobalt method (Singh and Sulochana, 1978)
b. Gomori’s method for acid phosphatase (Singh and Sulochana, 1978)
c. Lead method for ATPase (Bancroft, 2008)
d. Gomori’s method for non-specific esterase (Bancroft, 2008)

For ultra-structural studies, the tissue samples were collected from lymph node and were processed as per the technique of Parsons et al. (1991). The samples were cut into small pieces of 2 mm size and were fixed in 2% gluteraldehyde solution for 4 hours at 4 °C. The samples were subjected to the following steps:

a. Washing: the tissue sections were washed in 0.1M sodium cacodylate buffer- 3 changes of 15 min each at 4 °C
b. Post-fixation: the tissues were post-fixed in 1%osmium tetroxide in 0.1M sodium cacodylate buffer at 4 °C
c. Washing: the tissue samples were washed in 0.1M sodium cacodylate buffer- 3 changes of 15 min each at 4 °C
d. Dehydration: by ascending grades of acetone, drying: by tetra methyl saline method (Dey et al., 1989)
e. Mounting: the dry specimens were mounted on aluminium stubs,
f. Coating: gold coating was applied in the tissue samples in a JFC-1100 (Joel) ion sputter coater and the stubs with the tissue samples were loaded in the JMS-35CF (Joel) scanning electron microscope operated at 20KV.

3. Results and Discussion

Histologically, the cervical and lumber lymph nodes of Pati duck revealed similar structure. The lymph nodes were surrounded by a thin connective tissue capsule. Similar findings were supported by Patki et al. (2009) in Kuttanad duck. The capsule contained collagen, reticular and a few elastic and nerve fibers along with cross section of blood vessels (Figure 1). The trabeculae which were arisen from the capsule divided the lymph node into number of irregular compartments (Figure 2). These findings were in agreement...
with the findings of Lawn and Rose (1981) in duck. The trabeculae became distinct with the advancement of age. This finding was in consonances with the finding of Kumar et al. (2013) in Khaki Campbell duck. It also contained collagen, few elastic and reticular fibers along with nerve fibers (Figure 3). The parenchymatus part of these lymph node consisted of inner cortex and outer medulla along the cortical and medullary sinuses. These findings were in accordance with the findings of Hodges (1974) in duck, Kings and Mclelland (1975) in duck and Nickel et al. (1977) in duck. The cortex and medulla became obscured in all the age groups of duck. The cortex of lymph node was occupied by numerous follicles with different shape (Figure 4). These lymphoid follicles were surrounded by very thin layer of capsule. Similar finding was reported by Hodges (1974) in duck. The capsule was made up of collagen, few elastic, reticular and nerve fibers. The centre of these lymph node contained germinal centre, which was performed by Sugimura et al. (1977) in duck. These lymphoid follicles were separated from the capsule and trabeculae by the cortical sinuses. The medulla of these lymph node consisted of medullary sinuses and medullary cords. It also contained collagen, elastic, nerve fibers (Figure 5) and large amounts of reticular fibers (Figure 6). The medullary sinuses were larger compared to the cortical sinuses. The medulla was loosely arranged in week 4th of age of Pati duck (Figure 7) whereas in week 16th, 24th and 42nd of age, it became compact. These findings were in accordance with the findings of Patki et al. (2009) in Kuttanad duck.

Histo-chemically, there was moderate reaction for alkaline phosphatase in lymphatic nodule of lymph node and negative reaction in interfollicular area in all the age groups of Pati duck (Figure 8) in the current study. The capsule showed weak reaction for the enzyme activity in all the age groups of Pati duck.

In the present study, the capsule of the lymph node showed negative reaction in all the age groups of Pati duck.
lymphatic nodule of lymph node showed strong reaction while inter follicular area showed mild reaction of acid phosphatase in all the age groups of duck (Figure 9). However, it could not be compared due to non-availability of literature.

There was a strong reaction in the lymphatic nodule of lymph node and weak reaction in interfollicular area. The capsule showed weak reaction for the ATPase in all age groups of duck (Figure 10). However, it could not be compared due to paucity of literature.

There was a moderate reaction in the lymphatic nodule of lymph node and weak reaction in interfollicular area. The capsule showed the negative reaction for the non-specific esterase in all age groups of duck (Figure 11 and Table 1).

In present investigation, scanning electron microscopic studies of lymph node of Pati duck revealed that it was surrounded by very thin capsule and it contained numerous connective

Figure 7: Photomicrograph showing the capsule (a), subcapsular sinuses (b), blood vessels (c), medullary sinuses (d), medullary cord (e), lymphatic nodule (f) and cortical sinuses (g) of lumbar lymph node of 24th week old of Pati duck (H & E, X10)

Figure 8: Photomicrograph showing the acid phosphatase activity in lymphatic nodule (a), inter follicular area (b) and capsule (c) on 42th week old of Pati duck (Gomori’s; X10)

Figure 9: Photomicrograph showing the alkaline phosphatase activity in lymphatic nodule (a), inter follicular area (b) and capsule (c) on 16th week old of Pati duck (Gomori’s; X10)

Figure 10: Photomicrograph showing the adenosine triphosphatase activity in lymphatic nodule (a) and inter follicular area (b) on 4th week old of Pati duck (Lead method; X10)

Figure 11: Photomicrograph showing the non-specific esterase activity in lymphatic nodule (a), inter follicular area (b) and capsule (c) on 24th week old of Pati duck (1 Naphthyl acetate method; X10)
fibers. Trabeculae were extended from the capsule towards the centre of the lymph node (Figure12). Similar findings were supported by Fujita et al. (1972) in lymph node of dog. Medulla of the lymph node was peripherally located where as cortex was situated centrally (Figure13). The lymph node contained connective tissue fibers where lymphocytes were attached (Figure 14).

| Table 1: Histochemical characterization of lymph node of Pati duck |
|-------------------|-------------------|-------------------|
| Histoenzymes | Lymphatic nodule | Inter follicular area | Capsule |
| Alkaline Phosphatase | ++ | - | + |
| Acid Phosphatase | +++ | ++ | - |
| Adenosine triphosphatase | +++ | + | + |
| Non specific esterase | ++ | + | - |

Gradation for intensity of histochemical reaction: -= Negative; += Weak; ++ = Moderate; +++ = Strong

4. Conclusion

Histologically, cervical and lumber lymph nodes of Pati duck revealed the same structure. The trabeculae of the lymph node became distinct with age advancement. Cortex and medulla became obscured in all age groups. Medulla was loosely arranged in week 4th of age whereas in week 16th, 24th and 42nd of age, it became compact. Histochemically, lymphatic nodule showed intense reaction for acid phosphatase at week 42nd of age whereas lymphatic nodule of lymph node showed strong reaction for adenosine tri-phosphatase.

5. References

Hodges, R.D., 1974. The Histology of Fowl. Editor: Hodges,
Deka et al., 2020

