• Reference :1

    Anonymous, 2018. Horticultural Statistics at a glance. India. Horticulture Statistics Division Department of Agriculture, Cooperation & Farmers’ Welfare Ministry of Agriculture & Farmers’ Welfare Government of India. Pp 458. https://agricoop.nic.in/sites/default/files/Horticulture%20Statistics%20at%20a%20Glance-2018.pdf  

    Azarmi, R., Hajieghrari, B., Giglou, A., 2011. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology 10(31), 5850–5855. https://doi.org/10.5897/ajb10.1600

    Barari, H., 2016. Biocontrol of Tomato Fusarium wilt by Trichoderma species under in vitro and in vivo conditions. Cercetari Agronomice in Moldova 49(1), 91–98. https://doi.org/10.1515/cerce-2016-0008

    Benítez, T., Rincon, A.M., Limon, M.C., Codon, A.C., 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7(4), 249-260.     https://doi.org/10.2436/im.v7i4.9480

    Bissett, J., Gams, W., Jaklitsch, W., Samuels, G.J., 2015. Accepted Trichoderma names in the year 2015. IMA Fungus 6(2), 263–295. https://doi.org/10.5598/imafungus.2015.06.02.02

    BÅ‚aszczyk, L., Siwulski, M., Sobieralski, K., Lisiecka, J., Jedryczka, M., 2014. Trichoderma spp. - application and prospects for use in organic farming and industry. Journal of Plant Protection Research 54(4), 309–317. https://doi.org/10.2478/jppr-2014-0047

    Datnoff, L.E., Nemec, S., Pernezny, K., 1995. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biological Control 5(3), 427–431. https://doi.org/10.1006/bcon.1995.1051

    De Meyer, G., Bigirimana, J., Elad, Y., Hofte, M., 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology 104(3), 279–286. https://doi.org/10.1023/A:1008628806616

    Dubey, S.C., Suresh, M., Singh, B., 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control 40(1), 118–127. https://doi.org/10.1016/j.biocontrol.2006.06.006

    Dukare, A.S., Prasanna, R., Chandra Dubey, S., Nain, L., Chaudhary, V., Singh, R., Saxena, A.K., 2011. Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Protection 30(4), 436–442. https://doi.org/10.1016/j.cropro.2010.12.017

    Dutta, P., Das, B.C. 2002. Management of collar rot of tomato by Trichoderma spp. and chemicals. Indian Phytopath  55(2), 235–237.

    Etebarian, H.R., Scott, E.S., Wicks, T.J., 2000. Trichoderma harzianum T39 and T. virens DAR 74290 as potential biological control agents for Phytophthora erythroseptica. European Journal of Plant Pathology 106(4), 329–337. https://doi.org/10.1023/A:1008736727259

    Ezziyyani, M., Requena, M.E., Egea-Gilabert, C., Candela, M.E., 2007. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology 155(6), 342–349. https://doi.org/10.1111/j.1439-0434.2007.01237.x

    Hanson, L.E., Howell, C.R., 2002. Biocontrol efficacy and other characteristics of protoplast fusants between Trichoderma koningii and T. virens. Mycological Research 106(3), 321–328. https://doi.org/10.1017/S0953756202005592

    Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004. Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2(1), 43–56.   https://doi.org/10.1038/nrmicro797

    Hermosa, M.R., Grondona, I., Iturriaga, E.A., Diaz-Minguez, J.M., Castro, C., Monte, E., Garcia-Acha, I., 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied and Environmental Microbiology 66(5), 1890–1898. https://doi.org/10.1128/AEM.66.5.1890-1898.2000

    Hermosa, R., Viterbo, A., Chet, I., Monte, E., 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1), 17–25.     https://doi.org/10.1099/mic.0.052274-0

    Hewavitharana, N., Kannangara, S.D.P., Senanayake, S.P., 2018. Isolation, Identification and Mass production of five Trichoderma spp. on Solid and Liquid Carrier Media for Commercialization. International Journal of Applied Sciences and Biotechnology 6(4), 285–293. https://doi.org/10.3126/ijasbt.v6i4.22128

    Howell, C.R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87(1), 4–10.     https://doi.org/10.1094/PDIS.2003.87.1.4

    Jataraf, J., Radhakrim, N.V., Hannk, P., Sakoof, R., 2005. Biocontrol of tomato damping-off caused by Pythium aphanidermatum. Biocontrol 15, 55–65.

    Jayaraj, J., Radhakrishnan, N.V., Velazhahan, R., 2006. Development of formulations of Trichoderma harzianum strain M1 for control of damping-off of tomato caused by Pythium aphanidermatum. Archives of Phytopathology and Plant Protection 39(1), 1–8. https://doi.org/10.1080/03235400500094720

    Joshi, D., Hooda, K.S., Bhatt, J.C., 2009. Integration of soil solarization with bio-fumigation and Trichoderma spp for management of damping-off in tomato (Lycopersicon esculentum) in the mid altitude region of north-western Himalayas. IndianJournal of Agricultural Sciences 79(9), 754–757.

    Kalay, A.M., Tuhumury, G.N., Pesireron, N., Talaharuruson, A., 2019. Control of Damping off and Increased Growth of Tomato Seeds by Utilizing Trichoderma harzianum Based on Solid Organic Materials. Agrologia 8(1). https://doi.org/10.30598/a.v8i1.873

    Khan, M.R., Haque, Z., Rasool, F., Salati, K., Khan, U., Mohiddin, F.A., Zuhaib, M., 2019. Management of root-rot disease complex of mungbean caused by Macrophomina phaseolina and Rhizoctonia solani through soil application of Trichoderma spp. Crop Protection 119, 24–29. https://doi.org/10.1016/j.cropro.2019.01.014

    Kipngeno, P., Losenge, T., Maina, N., Kahangi, E., Juma, P., 2015. Efficacy of Bacillus subtilis and Trichoderma asperellum against Pythium aphanidermatum in tomatoes. Biological Control 90, 92–95. https://doi.org/10.1016/j.biocontrol.2015.05.017

    Lamichhane, J.R., Durr, C., Schwanck, A.A., Robin, M.H., Sarthou, J.P., Cellier, V., Messean, A.,  Aubertot, J.N., 2017. Integrated management of damping-off diseases. A review. Agronomy for Sustainable Development 37, 10.     https://doi.org/10.1007/s13593-017-0417-y.

    Larkin, R.P., Fravel, D.R., 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease 82(9), 1022–1028. https://doi.org/10.1094/PDIS.1998.82.9.1022

    Lewis, J.A., Lumsden, R.D., 2001. Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protection 20(1), 49–56. https://doi.org/10.1016/S0261-2194(00)00052-1

    Monte, E., 2001. Understanding Trichoderma: between biotechnology and microbial ecology. International microbiology : the official journal of the Spanish Society for Microbiology 4(1), 1–4.   https://doi.org/10.1007/s101230100001

    Monte, E., Llobell, 2003. Trichoderma in organic agriculture. Proceedings V World Avocado Congress    725–733.

    Naseby, D.C., Pascual, J.A., Lynch, J.M., 2000. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology 88(1), 161–169. https://doi.org/10.1046/j.1365-2672.2000.00939.x

    Nazir, B., Simon, S., Das, S., Soma, R., 2011. Comparative efficacy of Trichoderma viride and T. harzianum in management of Pythium apanidermatum and Rhizoctonia solani causing root-rot and damping-off diseases. Journal of Plant Disease Sciences 6(1), 60–62.

     

    Nzanza, B., Marais, D., Soundy, P., 2012. Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 62(3), 209–215. https://doi.org/10.1080/09064710.2011.598544

    Patel, S., Saraf, M., 2017. Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum f. sp. lycopersici. Archives of Phytopathology and Plant Protection 50(5–6), 228–238. https://doi.org/10.1080/03235408.2017.1287236

    Rosenzweig, C., Iglesias, A., Yang, X.B., Epstein, P., Chivian, E., 2001. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health 2(2), 90–104. https://doi.org/10.1023/A:1015086831467

    Ryu, J., Jin, R., Kim, Y., Lee, H., Kim, K., 2006. Biocontrol of damping-off (Rhizoctonia solani ) in cucumber by Trichoderma asperellum T-5. Korean Journal of Soil Science & Fertilizer 39(4), 185–194.

    Sayeed Akhtar, M., Siddiqui, Z.A., 2008. Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Protection 27(3–5), 410–417. https://doi.org/10.1016/j.cropro.2007.07.009

    Shabir, U.R., Lawrence, R., Kumar, E.J., Badri, Z.A., 2012. Comparative efficacy of Trichoderma viride, T. harzianum and carbendazim against damping-off disease of cauliflower caused by Rhizoctonia solani Kuehn. Journal of Biopesticides 5(1), 23–27.

    Sharma, K.K., Zaidi, N.W., Singh, U.S., 2012. Effect of biological seed treatment on seed germination and growth promotion of paddy, tomato and mustard. Vegetos 25(2), 375–386.

    Singh, S.P., Singh, H.B., Singh, D.K., Rakshit, A., 2014. Trichoderma-mediated enhancement of nutrient uptake and reduction in incidence of Rhizoctonia solani in tomato. Egyptian Journal of Biology 16(1), 29. https://doi.org/10.4314/ejb.v16i1.4

    Tsror, L., Barak, R., Sneh, B., 2001. Biological control of black scurf on potato under organic management. Crop Protection 20(2), 145–150. https://doi.org/10.1016/S0261-2194(00)00124-1

    Uddin, M.M., Akhtar, N., Faruq, A.N., 2009. Effect of Trichoderma harzianum and some selected soil amendments on damping-off disease of eggplant and tomato. 1, Sci. Foundation, 7(2), 117–126.

    Yedidia, I., Benhamou, N., Chet, I., 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the Biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology 65(3), 1061–1070. https://doi.org/10.1128/aem.65.3.1061-1070.1999.

People also read

Full Research

Valerian and Yarrow: Two medicinal Plants as Crop Protectant Against Late Frost 

M. Stefanini, L. Merrien, P. A. Marchand

Valerian, Yarrow, plant extract, plant protection, elicitor, anti-freezing action, hail damages

Published Online : 28 Nov 2018

Review Article

Status of Bamboo in India

Salil Tewari, Harshita Negi and R. Kaushal

Area, bamboo, cultivation, diversity, India, species

Published Online : 28 Feb 2019

Full Research

Insect Pollinator’s Role in Fruit Setting of Prosopis cineraria (L.) Druce

Shiwani Bhatnagar, Ameen Ullah Khan, Lokendra Singh Rathore and Neha Sharma

Prosopis cineraria (L.) Druce, fruit setting, insect pollinators

Published Online : 23 Nov 2022

Full Research

Divergence Studies in Chilli Genotypes (Capsicum annuum L.)

Sakshi Singh, A. K. Joshi, Amit Vikram, Sandeep Kansal and Sudha Singh

chilli, cluster mean, genetic divergence, intra-cluster distance

Published Online : 18 Feb 2023

Full Research

An Economic Analysis of Processing of Cotton Crop Produce

E. Radhika and R. Vijaya Kumari

Cotton, cost, return, ginning, spinning, profitability

Published Online : 28 Nov 2015

Full Research

Lecithins: A Food Additive Valuable for Antifungal Crop Protection

M. Jolly, R. Vidal and P. A. Marchand

Lecithins, fungicide, biopesticide, downy mildew, powdery mildew

Published Online : 28 Aug 2018