• Reference :1

    Aderema, A., Ulevitch, R.J., 2000.  Toll-like receptors. Nature 406, 782-7.

    Akira, S., Takeda, K., Kaisho, T., 2001. Toll –Like Receptors. Nature Immunology 2, 675-80.

    Almeida, J.R.M., Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., Gorwa-Grauslund, M.F., 2007. Increased tolerance and conversion of inhibitors in lignocellulosichydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology Biotechnology 82, 340–349.

    Anna, C., Marta, M., Katarzyna, K., 2021.TLR4 and CD14 trafcking and its infuence on LPS‑induced pro‑infammatory signalling. Cellular and Molecular Life Science  78, 1233–1261

    Bannerman, D.D., Paape, M.J., Hare, W.R., Sohn, E.J., 2003. Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. Journal of Dairy Science 86, 3128–3137.

    Bohan, Y., Qin, L., Min, Z., 2019. LPS‑induced upregulation of the TLR4 signaling pathway inhibits osteogenic differentiation of human periodontal ligament stem cells under inflammatory conditions. International journal of Molecular Medicine 4165, 2341–2351

    Bramley, A.J., Godinho, K.S., Grindal, R.J., 1981. Evidence of penetration of the bovine teat duct by Escherichia coli in the interval between milkings. Journal of Dairy Research 48, 379–386.

    Dixon, D.R., Darveau, R.P., 2005. Lipopolysaccharide heterogeneity. Innate host responses to bacterial modification of lipid A structure. Journal of Dental Research 84, 584–595.

    Dziarski, R., Wang, Q., Miyake, K., Kirschning, C.J., Gupta, D., 2001. MD-2enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram positive and Gram-negative bacteria and their cell wall components. Journal Immunology 166, 1938–1944.

    Griesbeck-Zilch, B., Meyer, H.H.D., Kuhn, C., Schwerin, M., Wellnitz, O., 2008. Staphylococcus aureus and Escherichia coli cause deviating expression profiles of cytokines and lactoferrina messenger ribonucleic acid in mammary epithelial cells. Journal of Dairy Science 91, 2215–2224.

    Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Gawa, T., Takeda, Y., Takeda, K., Akira,S., 1999. Cutting edge: Toll-like receptor 4 (TLR 4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR 4 as the LPS gene product. Journal of Immunology 162, 3749–3752.

    Ibeagha-Awemu, E.M., Lee, J.W., Ibeagha, A.E., Bannerman, D.D., Paape, M.J., Zhao, X., 2008. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells. Veterinary Research 39, 11.

    Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Scientific Reports 7, 1663.

    Jian,W., Yi, S., Yibo, F., Conghui, F., Song, C., Jie, S., Lili, Z.,  Long, Q.,  Mengjin, Y.,  Zhaofen, L., 2016. NF-κB inhibition attenuates LPS-induced TLR4 activation in monocyte cells. Molecular Medicine Reports 5825, 4505–4510

    Joshi, S., Gokhale, S., 2006.  Status of mastitis as an emerging disease in improved and periurban dairy farms in India.  Annals of the New York Academy of Sciences 1081, 74–83.

    Kirschning, C.J., Wesche, H., Ayres, M.T., Rothe, M., 1998.  Human Toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. Journal of  Experimental Medecine  188, 2091–2097.

    Kumar, R., Tiwari, A.K., Chaturvedi, U., Kumar, G.R., Sahoo, A.P., Rajmani, R.S., Saxena, L., Saxena, S., Tiwari, S., Kumar, S., 2012. Velogenicn ewcastle disease virus.  Applied Biochemistry and Biotechnology 167, 2005–2022.

    Lemaitre, B., Nicholas, E., Michart, L., Reichhart, J.M., Hoffmann, J.A., 1996. The dorsoventral regulatory gene. Cell 86, 973–983.

    Matsuguchi, T., Takagi, K., Musikacharoen, T., Yoshikai, Y., 2000. Gene expressions of lipopolysaccharide receptors, toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood 95, 1378–1385.

    Medvedev, A.E., Kopydlowski, K.M., Vogel, S.N., 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and Toll-like receptor 2 and 4 gene expression. Journal of Immunology 164, 5564–5574.

    Muzio, M.N., Polentarutti, D., Bosisio, M.K., Prahladan, A., Mantovani, 2000.  Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. Journal of Leukocyte Biology 67, 450.

    Nomura, F., Akashi, S., Sakao, Y., Sato, S., Kawai, T., Matsumoto, M., Nakanishi, M., Kimoto, M., Miyake, K., Takeda, K., Akira, S., 2000. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression. Journal of Immunology 164, 3476.

    Panigrahi, M., Sharma, A., Bhushan, B., 2014. Molecular characterization and expression profile of partial TLR4 gene in association to mastitis in crossbred cattle. Animal Biotechnology 25, 188–199

    Petzl, W.1. , Zerbe,  H.,  Günther, J., Yang, W.,  Seyfert, H.M.,  Nürnberg, G., Schuberth, H.J., 2008. Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate defense in the udder of the cow. Veterinary Research 3918.

    Philemon, U., Ntombikayise, X., Monde, N., 2091. LPS induces inflammatory chemokines via TLR-4 signalling and enhances the Warburg Effect in THP-1 cells. PLOS ONE 1–17

    Poltorak, A., Smirnova, I., He, X., Liu, M.Y., Van, H.C., McNally, O., Birdwell, D., Alejos, E., Silva, M., Du, X., Thompson, P., Chan, E.K., Ledesma, J., Roe, B., Clifton, S., Vogel, S.N., Beutler, B., 1998. Genetic and physical mapping of the Lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region. Blood Cells Molecular Disease 24, 340–355.

    Salwa, R.E., Hiba, S., Fathia, A.M., 2019. Toll-like receptors activation, signaling, and targeting: an overview. Bulletin of the National Research Centre 43, 187.

    Schletter, J., Heine, A.J., Ulmer, Rietschel, E.T., 1995. Molecular mechanisms of endotoxin activity. Archive Microbiology 164, 383–389.

    Seegers, H., Fourichon, C., Beaudeau, F., 2003. Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research 34, 475–491.

    Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., Kimoto, M., 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. Journal of Experimental Medicine 189, 1777–1782.

    Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., Akira, S., 1999.  Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451.

    Thanislass, J., Yuvaraj, G., Antony, P.X., Venkatesa perumal, S., ubba reddy, K.V., 2009. Enhanced expression of TNF-α by the buffalo PBMCs incubated with LPS. Indian Journal of Animal Sciences 80, 528–530.

    Theodora, A.M., Annelou, I.P., Van, D.V., Janneke, H., Marcus, J.S., Riekelt, H., Cornelis, Van., Tom, V.D.P., 2019. Platelet Toll-like receptor expression andactivation induced by lipopolysaccharide and

    Ulevitch, R.J., Tobias, P.S., 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annual. Review of Immunology 13,437–457.

    Vidya, M., Kumar, V., Sejian, V., Bagath, M., Krishnan, G., Bhatta, R., 2018. Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. International  Reviews of  Immunology 37, 20–36.

    Wallet, S., Puri, V., Gibson, F., 2018. Linkage of infection to adverse systemic complications: periodontal disease, toll-like receptors, and other pattern recognition systems. Vaccines 6, E21.

    Weishan, F., Decheng, B., Ruijin, Z., Nan, C., Hong, X., Rui, Z., Jun, L., Min, W., Xu, X., 2017. Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Scientific Reports 7, 1663.

    Yang, R.B., Mark, M.R., Gray, A., Huang, A., Xie, M.H., Zhang, M., Goddard, A., Wood, W.I., Gurney, A.L., Godowski, P.J., 1998. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signaling. Nature 395, 284–288.

    Yang, W., Zerbe, H., Petzl, W., Brunner, R.M., Gunther, J., Draing, C.,  Aulock, V.S., Schuberth, H.J.,  Seyfert, H.M., 2008. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNF alpha and interleukin-8 (CXCL8) expression in the udder. Molecular Immunololgy 45

    Zuhair, B.I., 2017. Mastitis vaccines in dairy cows: Recent developments and recommendations of application. Veterinary World 10, 1057–1062.

People also read

Innovative Technology

High Intensity Transplanting Increases Yield in Indigenous Aromatic Rice, Tulaipanji- a Case Study

Dhiman Sen and N. C. Sarkar

Aromatic rice, tulaipanji, high intensity, transplanting, yield

Published Online : 07 Jun 2010

General

Steering Agriculture through the Concept of Triple S: Seed, Soil and Sustainability

C. S. Pawar

Sustainable agriculture, chemical agriculture, seed-soil-sustainability

Published Online : 07 Sep 2010

Variation in Ralstonia solanacearum Isolated from Brinjal Plants in West Bengal

B. Mondal, I. Bhattacharya, A. sarkar and D. C. Khatua

Brinjal, bacterial wilt, Ralstonia solanacearum, aggressiveness

Published Online : 07 Jun 2011

Full Research

Physio-biochemical Changes in Sorghum Cultivars under Different Moisture Regimes

Sujata Pawar B. and Gagakh S. R.

Sorghum, moisture regimes, physio-biochemical and yield parameters

Published Online : 07 Feb 2016