• Reference :1

    Abercrombie, J.M., Stewart, M., Rao, M.R., Essington, M.E., Jr. Stewart, C.N., 2011. Aluminium accumulation in Pteris cretica and trace element uptake in vegetation growing on an abandoned aluminium smelter site in Knoxville, TN, USA. International Journal of Environment and Pollution 45(4), 310-326. DOI: 10.1504/IJEP.2011.040277.

    Agnello, A.C., Potysz, A., Fourdrin, C., Huguenot, D., Chauhan, P.S., 2018. Impact of pyrometallurgical slags on sunflower growth, metal accumulation and rhizosphere microbial communities. Chemosphere 208, 626−639. DOI: 10.1016/j.chemosphere.2018.06.038.

    Alimbaev, T., Mazhitova Z., Beksultanova, C., TentigulKyzy, N., 2020. Activities of mining and metallurgical industry enterprises of the Republic of Kazakhstan: environmental problems and possible solutions. E3S Web of Conferences 175, 14019. DOI: 10.1051/e3sconf/202017514019.

    Bergman, I.E., Vorobeichik, E.L., 2017. The effect of a copper smelter emissions on the stock and decomposition of coarse woody debris in spruce and fir woodlands. Contemporary Problems of Ecology 10(7), 790−803. DOI: 10.1134/S1995425517070022.

    Dudeney, A.W.L., Chan, B.K.C., Bouzalakos, S., Huisman, J.L., 2013. Management of waste and wastewater from mineral industry processes, especially leaching of sulphide resources: state of the art, International Journal of Mining, Reclamation and Environment 27(1), 2−37. DOI: 10.1080/17480930.2012.696790.

    Dudka, S., Adriano, D.C., 1997. Environmental impacts of metal ore mining and processing: A Review. Journal of Environmental Quality 26(3), 590−602. DOI: 10.2134/jeq1997.00472425002600030003x.

    Erokhin, Y.V., Zakharov, A.V., Leonova, L.V., 2019. Material composition of karabash copper smelter slags. Vestnik of Nosov Magnitogorsk State Technical University 17(3), 12−18. DOI: 10.18503/1995-2732-2019-17-3-12-18.

    Gabasiane, T.S., Bhero, S., Danha, G., 2019. Waste management and treatment of copper slag BCL, Selebi Phikwe Botswana: Review. Procedia Manufacturing 35, 494−499.  DOI: 10.1016/j.promfg.2019.05.071.

    GN, 2006. Predel’no dopustimye koncentracii (PDK) himicheskih veshchestv v pochve [Maximum permissible concentration (MPC) of chemicals in the soil], 6 p.

    Gonzalez-Fernandez, B., Rodriguez-Valdez, E., Boente, C., Menendez-Casares, E., Fernandez-Brana, A., Gallego, J.R., 2018. Long-term ongoing impact of arsenic contamination on the environmental compartments of a former mining-metallurgy area. Science of the Total Environment 610−611, 820−830.  DOI: 10.1016/j.scitotenv.2017.08.135.

    Goulet, R.R., Lalonde, J.D., Munger, C., Dupuis, S., Dumont-Frenette, G., Premont, S., Campbell, P.G.C., 2005. Phytoremediation of effluents from aluminum smelters: A study of Al retention in mesocosms containing aquatic plants. Water Research 39(11), 2291−2300. DOI: 10.1016/j.watres.2005.04.029.

    Houben, D., Couder, E., Sonnet, P., 2013. Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization. Journal of Soils and Sediments 13, 543−554.  DOI: 10.1007/s11368-012-0546-5.

    Iles, L., 2016. The Role of Metallurgy in Transforming Global Forests. Journal of Archaeological Method and Theory 23, 1219-124.  DOI: 10.1007/s10816-015-9266-7.

    Indian Minerals Yearbook, 2019. Vol. II. (Reviews on Metals and Alloys). Available from https://ibm.gov.in/?c=pages&m=index&id=1484.

    Jain, R.K., Cui, Z., Domen, J.K., 2016. Environmental impact of mining and mineral processing: management, monitoring, and auditing strategies. Boston: Butterworth-Heinemann, 322 p.  DOI: 10.1016/C2014-0-05174-X.

    Khorasanipour, M., Esmaeilzadeh, E., 2016. Environmental characterization of Sarcheshmeh Cu-smelting slag, Kerman, Iran: Application of geochemistry, mineralogy and single extraction methods. Journal of Geochemical Exploration 166, 1−17. DOI: 10.1016/j.gexplo.2016.03.015.

    Kierczak, J., Neel, C., Puziewicz, J., Bril, H., 2009. The mineralogy and weathering of slag produced by smelting of lateritic Ni ores, Szklary, Southwestern Poland. The Canadian Mineralogist 47(3), 557−572. DOI: 10.3749/canmin.47.3.557.

    Kierczak, J., Potysz, A., Pietranik, A., Tyszka, R., Modelska, M., Neel, C., Ettler, V., Mihaljevic, M., 2013. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). Journal of Geochemical Exploration 124, 183−194. DOI: 10.1016/j.gexplo.2012.09.008.

    Korelskiy, D.S., 2013. Evaluation of a breaking of plant communities exposed to technogenic load with space monitoring metod. Journal of Mining Institute 203, 170−173.

    Kotelnikova, A.L., Ryabinin, V.F., 2018. The composition features and perspective of use for the copper slag recycling waste // Lithosphere 18(1), 133−139. DOI: 10.24930/1681-9004-2018-18-1-133-139.

    Luo, Y., Wu, Y., Wang, H., Xing, R., Zheng, Z., Qiu, J., Yang, L., 2018. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years. Environmental Science and Pollution Research 25, 14773−14788. DOI: 10.1007/s11356-018-1573-6.

    Luo, Y., Wu, Y., Qiu, J., Wang, H., Yang, L., 2019. Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5 years of assisted revegetation. Journal of Soils and Sediments 19, 702−715. DOI: 10.1007/s11368-018-2082-4.

    Luo, Y., Wu, X., Qiu, J., Sun, H., Wu, Y., 2020. Root-induced changes in aggregation characteristics and potentially toxic elements (PTEs) speciation in a revegetated artificial zinc smelting waste slag site. Chemosphere 243, 125414. DOI: 10.1016/j.chemosphere.2019.125414.

    Lyanguzova, I.V., Goldvirt, D.K., Fadeeva, I.K., 2016. Spatiotemporal dynamics of the pollution of Al–Fe-humus podzols in the impact zone of a nonferrous metallurgical plant. Eurasian Soil Science 49, 1189−1203. DOI: 10.1134/S1064229316100094.

    Makarov, A.B., Guman, O.M., Dolinina, I.A., 2010. Mineral composition of waste slags from the Sredneuralsk copper smelter and assessment of their potential environmental hazard. Bulletin of the Ural Branch of the Russian Mineralogical Society 7, 80−86.

    Makarov, A.B., Khasanova, G.G., Koinov S.A., 2018. Mineralogical and geochemical features of old-lying slags of the Polevskoy copper smelter (Middle Urals, Sverdlovsk region). Problems of mineralogy, petrography and metallogeny. Scientific Readings in Memory of P.N. Chirvinsky 21, 430−435.

    Masloboev, V.A., Seleznev, S.G., Makarov, D.V., Svetlov, A.V., 2014. Assessment of eco-hazard of copper-nickel ore mining and processing waste. Journal of Mining Science 50(3), 559−572. DOI: 10.1134/S106273911403017X.

    Nesterkov, A.V., 2019. Surface pollution of meadow plants during the period of reduction of atmospheric emissions from a copper smelter. Russian Journal of Ecology 50(4), 408−412. DOI: 10.1134/S106741361904012X.

    Norgate, T.E., Jahanshahi, S., Rankin, W.J., 2007. Assessing the environmental impact of metal production processes. Journal of Cleaner Production 15(8-9), 838−848. DOI: 10.1016/j.jclepro.2006.06.018.

    Osyczka, P., Rola, K., 2013. Cladonia lichens as the most effective and essential pioneers in strongly contaminated slag dumps. Central European Journal of Biology 8(9), 876−887. DOI: 10.2478/s11535-013-0210-0.

    Parshina, M.V., Korelskiy, D.S., 2008. Complex monitoring of the impact of the Severonickel plant on the natural environment. Journal of Mining Institute 174, 217−221.

    Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., Saik, P., 2019. Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits 13(1), 24−38. DOI: 10.33271/mining13.01.024.

    Piatak, N.M., Parsons, M.B., Seal II, R.R., 2014. Characteristics and Environmental Aspects of Slag: A Review. Applied Geochemistry 57, 236−266. DOI: 10.1016/j.apgeochem.2014.04.009.

    Rola, K., Osyczka, P., Nobis, M., Drozd, P., 2015. How do soil factors determine vegetation structure and species richness in post-smelting dumps? Ecological Engineering 75, 332−342. DOI: 10.1016/j.ecoleng.2014.11.026.

    Serbula, S.M., Kalinovic, T.S., Ilic, A.A., Kalinovic, J.V., Steharnik, M.M., 2013. Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol and Air Quality Research 13, 563−573. DOI: 10.4209/aaqr.2012.06.0153.

    Shadrunova, I.V., Ozhogina, E.G., Kolodezhnaya, E.V., Gorlova, O.E., 2013. Slag disintegration selectivity. Journal of Mining Science 49(5), 831−838. DOI: 10.1134/S1062739149050183.

    Shilova, I.I., Loginova, N.B., 1974. Ecological specificity of dumps of non-ferrous metallurgy enterprises and assessment of the possibility of creating cultural phytocenoses on them. Plants and Industrial Environment 3, 45−55.

    Sobocka, J., Balkovic, J., Bedrna, Z., 2017. Classification of anthropogenic soils by new diagnostic criteria involved in the Slovak Soil Classification System (2014). Geophysical Research Abstracts 19, EGU2017-4532-2.

    Statista, 2020.  Major countries in copper mine production worldwide from 2010 to 2019. Available from https://www.statista.com/statistics/264626/copper-production-by-country/

    Stepanova, L.P., Pisareva A.V., Tsukanavichute V.E., 2020. Toxicological assessment of the impact of metallurgical industry waste on the environmental properties of light gray forest soils. Ecology and Industry of Russia 24(6), 54−59. DOI: 10.18412 / 1816-0395-2020-6-54-59.

    Turisova, I., Sabo, P., Strba, T., Korony, S., Andras, P., Sirka, P., 2016. Analyses of floristic composition of the abandoned Cu-dump field Piesky (Stare Hory Mountains, Slovakia). Web Ecology 16, 97−111. DOI: 10.5194/we-16-97-2016.

    Vodyanitskii, Y.N., Vasil’ev, A.A., Chashchin, A.N., Savichev, A.T., 2010. The influence of technogenic and natural factors on the content of heavy metals in soils of the Middle Cisurals region: the town of Chusovoi and its suburbs. Eurasian Soil Science 43(9), 1011−1021. DOI: 10.1134/S1064229310090085.

    Zemnukhova, L.A., Falaleeva, N.A., 2011. Non-ferrous metallurgy slags: washing-out of heavy metals and perspectives of their usage in construction. Vestnik of Far Eastern Branch of Russian Academy of Sciences 5, 115−118.

    Zheleva, E.I., Bozhinova, P.M., Venelinov, M.A., 2012. Phytocenological characteristics of dumps of open-pit mining of copper ore. Biological reclamation and monitoring of disturbed lands. Ekaterinburg: Publishing House of the Ural University, 103−112.

    Zolotova, E.S., Ivanova, N.S., Ryabinin, V.F., Ayan, S., Kotelnikova, A.L., 2021. Element mobility from the copper smelting slag recycling waste into forest soils of the taiga in Middle Urals. Environmental Science and Pollution Research 28, 1141−1150. DOI: 10.1007/s11356-020-10577-7.

    Zolotova, E., Ryabinin, V., 2019. Elements Distribution in Soil and Plants of an Old Copper Slag Dump in the Middle Urals, Russia. Ecological Questions 30(4), 41−47.  DOI: 10.12775/EQ.2019.026.

People also read

Innovative Technology

High Intensity Transplanting Increases Yield in Indigenous Aromatic Rice, Tulaipanji- a Case Study

Dhiman Sen and N. C. Sarkar

Aromatic rice, tulaipanji, high intensity, transplanting, yield

Published Online : 07 Jun 2010


Steering Agriculture through the Concept of Triple S: Seed, Soil and Sustainability

C. S. Pawar

Sustainable agriculture, chemical agriculture, seed-soil-sustainability

Published Online : 07 Sep 2010

Variation in Ralstonia solanacearum Isolated from Brinjal Plants in West Bengal

B. Mondal, I. Bhattacharya, A. sarkar and D. C. Khatua

Brinjal, bacterial wilt, Ralstonia solanacearum, aggressiveness

Published Online : 07 Jun 2011

Stress to Human Health Due to Electromagnetic Radiation Emitted from Mobile Phone

S. Ganguly, S. K. Mukhopadhayay and S. K. Guha

Electromagnetic radiations, harmful, health, mobile phone

Published Online : 07 Sep 2011